Brown adipose tissue (BAT) uses the chemical energy of lipids and glucose to produce heat, a function that can be induced by cold exposure or diet. A key regulator of BAT is the gene encoding PR domain containing 16 (Prdm16), whose expression can drive differentiation of myogenic and white fat precursors to brown adipocytes. Here we show that after cold exposure, the muscle-enriched miRNA-133 is markedly downregulated in BAT and subcutaneous white adipose tissue (SAT) as a result of decreased expression of its transcriptional regulator Mef2. miR-133 directly targets and negatively regulates PRDM16, and inhibition of miR-133 or Mef2 promotes differentiation of precursors from BAT and SAT to mature brown adipocytes, thereby leading to increased mitochondrial activity. Forced expression of miR-133 in brown adipogenic conditions prevents the differentiation to brown adipocytes in both BAT and SAT precursors. Our results point to Mef2 and miR-133 as central upstream regulators of Prdm16 and hence of brown adipogenesis in response to cold exposure in BAT and SAT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncb2612 | DOI Listing |
FASEB J
January 2025
Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands.
Brown adipose tissue (BAT) is a metabolically highly active tissue that dissipates energy stored within its intracellular triglyceride droplets as heat. Others have previously utilized MRI to show that the fat fraction of human supraclavicular BAT (scBAT) decreases upon cold exposure, compared with baseline (i.e.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Dermatology, University Medical Center Regensburg, 93053 Regensburg, Germany.
Cold atmospheric plasma (CAP) has antimicrobial properties and is also known to stimulate the immune system. These properties could be useful for the development of a novel therapeutic or preventive strategy against respiratory infections in the upper respiratory tract (URT) such as ventilator-associated pneumonia (VAP) without inducing an immune overreaction. This study investigated the cellular responses of polymorphonuclear neutrophils (PMNs) after exposure to CAP in a three-dimensional (3D) model of the URT.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Epidemiology and Health Statistics, School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
To analyze the relationship between hot or cold, and wet or dry interacting weather, and urolithiasis-related hospitalizations. Distributed lag nonlinear model for time series design was used to build exposure-response curves for the association of daily mean temperature and relative humidity with urolithiasis-related hospitalizations. Cut-off values were determined for temperature, humidity, and dichotomous categories to define heat-cold and wet-dry meteorological conditions.
View Article and Find Full Text PDFNew Phytol
January 2025
Amsterdam Institute for Life and Environment (A-LIFE), Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands.
Lichens play important roles in habitat formation and community succession in polar and alpine ecosystems. Despite their significance, the ecological effects of lichen traits remain poorly researched. We propose a trait trade-off for managing light exposure based on climatic harshness.
View Article and Find Full Text PDFAm J Ind Med
January 2025
Occupational Cancer Research Centre, Ontario Health, Toronto, Ontario, Canada.
Introduction: Raynaud's phenomenon (RP) is linked to occupational exposures such as vibration, cold temperature, and chemicals. However, large cohort studies examining RP by occupation and sex are scarce. To address this gap, this study aimed to assess risk of RP by both occupation and sex in a large cohort of workers in Ontario, Canada.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!