In this study, experiments were designed to determine whether microRNAs (miRNAs) play a role in the regulation or modulation of cardiomyocytic reactions under cardioplegia-induced cardiac arrest during cardiopulmonary bypass. MicroRNAs play powerful and unexpected roles in numerous cardiovascular diseases. MicroRNA-based therapeutics may provide a unique opportunity to translate this knowledge into the clinical setting. Sprague-Dawley rats (10 per group) were randomly divided into three groups: control, perfusion, and arrest groups. In the perfusion group, isolated hearts were perfused with oxygenated physiologic buffered solution for 3 h using a Langendorff apparatus. In the arrest group, cold crystalloid cardioplegia solution was used to induce and maintain cardiac arrest for 1 h; hearts were reperfused for 2 h with warm oxygenated phosphate-buffered saline solution. Cardiac miRNAs and protein expression patterns were detected using miRNA arrays and two-dimensional fluorescence difference gel electrophoresis followed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Of 103 different miRNAs and 222 different proteins expressed in the three groups, miRNA-27a was the one considered to be related to the regulation of cardiomyocyte apoptosis by targeting the interleukin 10 pathway. Transfection of H9c2 cardiomyocytes with pre-miRNA-27a, which significantly decreased the mRNA and protein levels of interleukin 10 and increased expression of nuclear factor κB and its downstream cytokines during hypoxia/reperfusion injury, could activate caspase 3 and apoptosis. Our study demonstrated the altered expression of miRNAs in cardiomyocytes during cardioplegia-induced cardiac arrest. The involvement of miRNAs in cardiomyocytic apoptosis adds another level of complexity to gene regulation, which could open up novel avenues for cardiac protection strategies during cardiac surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SHK.0b013e318271f944 | DOI Listing |
J Am Med Inform Assoc
December 2024
AI for Health Institute, Washington University in St Louis, St Louis, MO 63130, United States.
Objective: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning.
View Article and Find Full Text PDFIntensive Care Med Exp
December 2024
Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway.
Background: Identifying spontaneous circulation during cardiopulmonary resuscitation (CPR) is challenging. Current methods, which involve intermittent and time-consuming pulse checks, necessitate pauses in chest compressions. This issue is problematic in both in-hospital cardiac arrest and out-of-hospital cardiac arrest situations, where resources for identifying circulation during CPR may be limited.
View Article and Find Full Text PDFSci Rep
December 2024
Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Pediatric neurological injury and disease is a critical public health issue due to increasing rates of survival from primary injuries (e.g., cardiac arrest, traumatic brain injury) and a lack of monitoring technologies and therapeutics for treatment of secondary neurological injury.
View Article and Find Full Text PDFAm J Emerg Med
December 2024
Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan. Electronic address:
BMJ Case Rep
December 2024
Critical Care, North West Anglia NHS Foundation Trust, Peterborough, UK.
We present a case of hyperkaliaemic cardiac arrest in a patient with Angelman's syndrome after administration of suxamethonium in rapid sequence intubation. The patient was admitted to the critical care unit in with aspiration pneumonia and intestinal obstruction. They had a cardiac arrest after suxamethonium administration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!