A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A comparative study of bovine and porcine pericardium to highlight their potential advantages to manufacture percutaneous cardiovascular implants. | LitMetric

Rationale: Prosthetic heart valves designed to be implanted percutaneously must be loaded within delivery catheters whose diameter can be as low as 18 F (6 mm). This mandatory crimping of the devices may result in deleterious damages to the tissues used for valve manufacturing. As bovine and porcine pericardial tissue are currently given preference because of their excellent availability and traceability, a preliminary comparative study was undertaken to highlight their potential advantages.

Materials And Methods: Bovine and pericardium patches were compared morphologically (light microscopy, scanning electron microscopy and transmission electron microscopy). The acute thrombogenicity of both materials was measured in term of platelet uptake and observed by scanning electron microscopy, porcine intact and injured arteries being used as controls. The pericardium specimens were also subjected to uniaxial tensile tests to compare their respective mechanical characteristics.

Results: Both pericardiums showed a layered architecture of collagen bundles presenting some interstitial cells. They displayed wavy crimps typical of an unloaded collagenous tissue. The collagen bundles were not bound together and the fibrils were parallel with characteristic periodicity patterns of cross striations. The mesothelial cells found in vivo on the serous surface were no longer present due to tissue processing, but the adjacent structure was far more compacted when compared to the fibrous side. The fibrinocollagenous surfaces were found to be more thrombogenic for both bovine and porcine tissues and the serous side of the porcine pericardium retained more platelets when compared to the bovine samples, making the acute thrombogenicity more important in the porcine pericardium.

Conclusion: Both bovine and porcine pericardium used in cardiovascular implantology can be selected to manufacture percutaneous heart valves. The selection of one pericardium preferably to the other should deserve additional testing regarding the innocuousness of crimping when loaded in delivery catheters and the long-term durability after percutaneous deployment.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328212465482DOI Listing

Publication Analysis

Top Keywords

bovine porcine
16
porcine pericardium
12
electron microscopy
12
comparative study
8
highlight potential
8
manufacture percutaneous
8
heart valves
8
loaded delivery
8
delivery catheters
8
scanning electron
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!