Humans are able to estimate the vertical direction of an Earth fixed reference frame, which estimate is known as the subjective vertical (SV). To identify the SV, a distinction must be made between accelerations due to self-motion and gravity. Previous studies on this topic measured the SV using a variety of methods possibly affecting the outcome differently. In this study subjects were sinusoidally moved around their naso-occipital axis and their SV was dynamically measured using a joystick. In half the experimental conditions, the joystick was moved with the motion and was kept vertical on other experimental conditions, thus moving against self-motion. Although physically indicating the same angle, the average perceived angle was larger when moving the joystick with the motion than against. The difference can be explained by assuming an idiotropic vector being at issue when measuring the subjective vertical, and not when measuring subjective tilt.

Download full-text PDF

Source
http://dx.doi.org/10.3233/VES-2012-0454DOI Listing

Publication Analysis

Top Keywords

subjective vertical
12
experimental conditions
8
measuring subjective
8
vertical
5
measuring dynamics
4
subjective
4
dynamics subjective
4
vertical tilt
4
joystick
4
tilt joystick
4

Similar Publications

In-vehicle Head-Up Displays (HUDs) are expected to incorporate more information in the future, necessitating deeper understandings of design properties that can enhance display safety and efficiency. However, the optimal display characteristics-particularly in terms of area and shape-remain inadequately understood. This study investigated these two factors by manipulating horizontal and vertical Field of View (FOV) angles within a simulated in-vehicle HUD.

View Article and Find Full Text PDF

The Impact of Virtual Reality Content Characteristics on Cybersickness and Head Movement Patterns.

Sensors (Basel)

January 2025

University-Industrial Cooperation Corps of HiVE Center, Wonkwang Health Science University, 514, Iksan-daero, Iksan-si 54538, Republic of Korea.

Virtual reality (VR) technology has gained popularity across various fields; however, its use often induces cybersickness, characterized by symptoms such as dizziness, nausea, and eye strain. This study investigated the differences in cybersickness levels and head movement patterns under three distinct VR viewing conditions: dynamic VR (DVR), static VR (SVR), and a control condition (CON) using a simulator. Thirty healthy adults participated, and their head movements were recorded using the Meta Quest 2 VR headset and analyzed using Python.

View Article and Find Full Text PDF

Objective: Acute unilateral peripheral vestibulopathy or vestibular neuritis (AUPV/VN) manifests as acute onset vertigo, often accompanied by nausea, vomiting, and moderate gait instability. It is suspected when vestibular hypofunction is documented on video-head impulse (video-HITs) and caloric tests in the presence of contralesionally beating horizontal-torsional nystagmus. Herein, we report patients presenting with acute vestibular syndrome (AVS) showing selective otolithic dysfunction in the presence of normal caloric and video-HITs and abnormal enhancement of the peripheral vestibular structures on MRI.

View Article and Find Full Text PDF

Aim: This randomized controlled trial aimed to evaluate the impact of different incision types (oblique, vertical, and horizontal) for hamstring graft harvest on sensory disturbances and functional outcomes after anterior cruciate ligament (ACL) reconstruction.

Methods: A total of 118 patients were randomized into three groups: oblique incision (n = 40), vertical incision (n = 40), and horizontal incision (n = 38). Sensory deficits were assessed using Von Frey Filaments at three weeks, three months, and six months postoperatively.

View Article and Find Full Text PDF

Purpose: Our study presents a virtual reality-based tangent screen test (VTS) to measure subjective ocular deviations including torsion in nine directions of gaze. The test was compared to the analogous Harms tangent screen test (HTS).

Methods: We used an Oculus Go controller and head-mounted-display with rotation sensors to measure patient's head orientation for the VTS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!