Increased resistance of immobilized-stressed mice to infection: correlation with behavioral alterations.

Brain Behav Immun

Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.

Published: February 2013

Immobilization is an easy and convenient method to induce both psychological and physical stress resulting in restricted motility and aggression and is believed to be the most severe type of stress in rodent models. Although it has been generally accepted that chronic stress often results in immunosuppression while acute stress has been shown to enhance immune responses, the effects of IS on the host resistance to Escherichia coli (E. coli) infection and associated behavioral changes are still not clear. In a series of experiments aimed at determining the level of hypothalamic COX-2, HSP-90, HSP-70, SOD-1 and plasma level of corticosterone, cytokine, antibody titer and their association with behavioral activities, mice were infected with viable E. coli during acute and chronic IS by taping their paws. In this study we show that acute and chronic IS enhances the resistance of mice to E. coli infection via inhibiting the production of pro-inflammatory cytokines, free radicals, and by improving the exploratory behavior. Altogether, our findings support the notion that cytokines released during immune activation and under the influence of corticosterone can modulate the open field behavior both in terms of locomotor activity as well as exploration. One of the features observed with chronic stressor was a lower ability to resist bacterial infection, although in case of acute stress, a better clearance of bacterial infection was observed in vivo with improvement of exploratory behavior and cognitive functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2012.11.001DOI Listing

Publication Analysis

Top Keywords

acute stress
8
coli infection
8
acute chronic
8
exploratory behavior
8
bacterial infection
8
infection
5
stress
5
increased resistance
4
resistance immobilized-stressed
4
immobilized-stressed mice
4

Similar Publications

Pathological cardiac remodeling is a maladaptive response that leads to changes in the size, structure, and function of the heart. These changes occur due to an acute or chronic stress on the heart and involve a complex interplay of hemodynamic, neurohormonal and molecular factors. As a critical regulator of cell growth, protein synthesis and autophagy mechanistic target of rapamycin complex 1 (mTORC1) is an important mediator of pathological cardiac remodeling.

View Article and Find Full Text PDF

Unbalanced redox homeostasis leads to the production of reactive oxygen species and exacerbates inflammatory bowel disease. To investigate the role of the transcription factor Nrf2, a major antioxidative stress sensor, in intestinal epithelial cells (IECs), we generated IEC-specific Nrf2 gene knock-in mice (Nrf2-vRes), which express Nrf2 only in IECs, using the cre/loxp system. Colitis was induced in wild-type (WT) mice, whole-body Nrf2-knockout (Nrf2-KO) mice, and Nrf2-vRes mice by administering dextran sulfate sodium (DSS) for 1 week (acute model) or intermittently for 5 weeks (chronic model).

View Article and Find Full Text PDF

Suppression of TLR4/NF-κB signaling by kaurenoic acid in a mice model of monosodium urate crystals-induced acute gout.

Arch Biochem Biophys

January 2025

Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Electronic address:

Aim: The aim of the current study was to investigate the potential therapeutic effect of kaurenoic acid (KA) against Monosodium Urate Crystals (MSU)- induced acute gout by downregulation of NF-κB signaling pathway, mitigating inflammation and oxidative stress produced by MSU crystals. KA potentially targeted NF-κB pathway activation and provided comprehensive insights through multiple approaches. This was accomplished by advanced analytical techniques.

View Article and Find Full Text PDF

Mitigating LPS-induced stress in Chinese mitten crab (Eriocheir sinensis) with P4' peptide-bearing Bacillus subtilis.

Fish Shellfish Immunol

January 2025

Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China. Electronic address:

The Chinese mitten crab (Eriocheir sinensis) is an important component in Chinese aquaculture. Due to its lacking adaptive immune system as a crustacean, it exhibits poor tolerance to environmental stresses, particularly the deleterious impact of lipopolysaccharide (LPS) from pathogenic bacteria during E. sinensis culture.

View Article and Find Full Text PDF

Experiences of patients who retest positive for SARS-CoV-2 Omicron variant after discharge: a qualitative study.

J Infect Dev Ctries

December 2024

The Cancer Hospital Affiliated to Shandong First Medical University (Shandong Cancer Prevention Research Institute, Shandong Cancer Hospital), Jinan 250117, China.

Introduction: In this study, we analyzed the psychological aspects of coronavirus disease 2019 (COVID-19) patients who were discharged from the hospitals in Shanghai, China, and later had positive nucleic acid retest results for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant infection (re-positive COVID-19). The purpose was to gain clarity on the patients' needs and to provide evidence for the medical staff to deliver scientific and targeted health care to the patients.

Methodology: We screened patients who tested positive for SARS-CoV-2 Omicron variant infection by nucleic acid testing after having previously recovered from a COVID-19 infection and being discharged from Shanghai shelter hospitals or COVID-19-designated hospitals from April 3, 2022, to May 10, 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!