N-[2-(4'-methoxy[1,1'-biphenyl]-4-yl)ethyl]-8-CAC (1) is a high affinity (K(i)=0.084 nM) ligand for the μ opioid receptor and served as the lead compound for this study. Analogues of 1 were made in hopes of identifying an SAR within a series of oxygenated (distal) phenyl derivatives. A number of new analogues were made having single-digit pM affinity for the μ receptor. The most potent was the 3',4'-methylenedioxy analogue 18 (K(i)=1.6 pM).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508289PMC
http://dx.doi.org/10.1016/j.bmcl.2012.10.081DOI Listing

Publication Analysis

Top Keywords

high affinity
8
redefining structure-activity
4
structure-activity relationships
4
relationships 26-methano-3-benzazocines
4
26-methano-3-benzazocines high
4
affinity ligands
4
ligands opioid
4
opioid receptors
4
receptors picomolar
4
picomolar range
4

Similar Publications

Enterococcus faecalis is responsible for numerous serious infections, and treatment options often include ampicillin combined with an aminoglycoside or dual beta-lactam therapy with ampicillin and a third-generation cephalosporin. The mechanism of dual beta-lactam therapy relies on the saturation of penicillin-binding proteins (PBPs). Ceftobiprole exhibits high affinity binding to nearly all E.

View Article and Find Full Text PDF

Background: Polycystic ovary syndrome (PCOS) is an endocrine disease associated with reproductive and metabolic abnormalities. The aim of this study was to elucidate the effects of Schisandra rubriflora (S. rubriflora) on PCOS and its related mechanisms using network pharmacology, molecular docking and in vitro experiments.

View Article and Find Full Text PDF

To understand xylan-cellulose interactions in softwood, the adsorption behavior of hexameric softwood xylan proxies with various substitutions was analyzed on the three surfaces of a hexagonal cellulose microfibril. The study found that all surfaces could bind xylan motifs, showing equally high affinity for the hydrophilic (110) and hydrophobic (100) surfaces and significantly lower affinity for the hydrophilic (11̅0) surface. Unsubstituted xylose hexamers had the highest affinity and most ordered adsorption structures, while substitutions generally reduced the affinity and regularity.

View Article and Find Full Text PDF

Modulation of Protein-Protein Interactions with Molecular Glues in a Synthetic Condensate Platform.

J Am Chem Soc

January 2025

Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Misregulation of protein-protein interactions (PPIs) underlies many diseases; hence, molecules that stabilize PPIs, known as molecular glues, are promising drug candidates. Identification of novel molecular glues is highly challenging among others because classical biochemical assays in dilute aqueous conditions have limitations for evaluating weak PPIs and their stabilization by molecular glues. This hampers the systematic discovery and evaluation of molecular glues.

View Article and Find Full Text PDF

Radioactive iodine, a key waste product of nuclear energy, has been a significant concern among nuclear materials because of its high volatility and its ability to easily enter the human metabolism. Porous materials containing a large number of N-heterocyclic units such as carbazole in the skeletons use as effective adsorbents showing high iodine capture capacities. Herein, a new carbazole-bismaleimide-based hyper-cross-linked porous organic polymer (CzBMI-POP) was successfully prepared from a new tetra-armed carbazole-maleimide monomer (Bis-Cz(BMI)), which contains biscarbazole units and maleimide side groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!