Forelimb-hindlimb coordination in adult rats moving freely along 2m long runway was investigated using the method of footprint recording. Rats were divided into 3 groups with different extent of spinal lesions (T(9)). Before surgery rats moved with a mean locomotor speed of 73±20 to 96±18cms(-1), stride lengths of 17.5±2.0 to 21.2±2.0cm, and trot like coordination. Early after surgery the locomotor speed and the stride lengths were decreased. The forelimb steps were shorter than hindlimb steps, which led to the occurrence of unpaired forelimb steps. Unpaired steps occurred when the hind paw print lay more than half the hindlimb stride length in front of the ipsilateral paw. The number of unpaired steps was negatively correlated with the difference between the fore- and hindlimb step lengths. The recovery of locomotor speed, stride length, and step sequence patterns took up to 3.5 months depending on the extent of lesion. In the last testings the coordination was characterized by increased distances between ipsilateral footprints leading to a change from an almost synchronized trot to a lesion-dependent walk. This change was accompanied by a switch from the use of both patterns A and C to the most frequent use of the Aa pattern that is better adapted to maintain the body balance. All locomotor changes depended on the extent of the injury of lateral and ventral funiculi. These results demonstrate that footprint analysis can be used for the evaluation of forelimb-hindlimb coordination after spinal lesion in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2012.10.054DOI Listing

Publication Analysis

Top Keywords

forelimb-hindlimb coordination
12
locomotor speed
12
spinal lesions
8
stride lengths
8
speed stride
8
forelimb steps
8
unpaired steps
8
stride length
8
coordination
5
steps
5

Similar Publications

Article Synopsis
  • Cutaneous afferents in cats help coordinate muscle activity across all four limbs during movement, especially when external obstacles are encountered.
  • The study investigated how reflex pathways in the limbs are affected after incomplete spinal cord injuries, using a staggered thoracic hemisection model to simulate the injury in seven adult cats.
  • Results indicated a significant loss in reflex responses and limb coordination after spinal injury, with some reflexes preserving modulation, suggesting compromised but not entirely lost functionality in response to external disturbances.
View Article and Find Full Text PDF

In quadrupeds, such as cats, cutaneous afferents from the forepaw dorsum signal external perturbations and send signals to spinal circuits to coordinate the activity in muscles of all four limbs. How these cutaneous reflex pathways from forelimb afferents are reorganized after an incomplete spinal cord injury is not clear. Using a staggered thoracic lateral hemisections paradigm, we investigated changes in intralimb and interlimb reflex pathways by electrically stimulating the left and right superficial radial nerves in seven adult cats and recording reflex responses in five forelimb and ten hindlimb muscles.

View Article and Find Full Text PDF

The neocortex encodes complex and simple motor outputs in all mammalian species that have been tested. Given that changes in neocortical reorganization (and corresponding corticospinal output) have been implicated in long term motor recovery after stroke injury, there remains a need to understand this biology in order to expedite and optimize clinical care. Here, changes in the neocortical topography of complex and simple movement outputs were evaluated in mice following experimental middle cerebral artery occlusion (MCAo).

View Article and Find Full Text PDF

A secondary motor area contributing to interlimb coordination during visually guided locomotion in the cat.

Cereb Cortex

December 2022

Département de Neurosciences, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA) Groupe de recherche sur la signalisation neurale et la circuiterie (SNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada.

We investigated the contribution of cytoarchitectonic cortical area 4δc, in the caudal bank of the cruciate sulcus of the cat, to the control of visually guided locomotion. To do so, we recorded the activity of 114 neurons in 4δc while cats walked on a treadmill and stepped over an obstacle that advanced toward them. A total of 84/114 (74%) cells were task-related and 68/84 (81%) of these cells showed significant modulation of their discharge frequency when the contralateral limbs were the first to step over the obstacle.

View Article and Find Full Text PDF

Rehabilitative treatment, including treadmill training, is considered an important strategy for restoring motor function after spinal cord injury (SCI). However, many unexplained problems persist regarding the appropriate rehabilitative method and the mechanism underlying the beneficial effects of rehabilitation. Moreover, only a few preclinical studies have been performed on rehabilitative interventions for chronic SCI, although most patients have chronic injuries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!