Classical ischemia-reperfusion (IR) preconditioning relies on phosphatidylinositol 3-kinase (PI3K) for protective signaling. Surprisingly, inhibition of PI3Kα activity using a dominant negative (DN) strategy protected the murine heart from IR injury. It has been proposed that increased signaling through PI3Kγ may contribute to the improved recovery of PI3KαDN hearts following IR. To investigate the mechanism by which PI3KαDN hearts are protected from IR injury, we created a double mutant (PI3KDM) model by crossing p110γ(-/-) (PI3KγKO) with cardiac-specific PI3KαDN mice. The PI3KDM model has morphological and hemodynamic features that are characteristic of both PI3Kγ(-/-) and PI3KαDN mice. Interestingly, when subjected to IR using ex vivo Langendorff perfusion, PI3KDM hearts showed significantly enhanced functional recovery when compared to wildtype (WT) hearts. However, signaling downstream of PI3K through Akt and GSK3β, which has been associated with IR protection, was reduced in PI3KDM hearts. Using ex vivo working heart perfusion, we found no difference in functional recovery after IR between PI3KDM and PI3KαDN; also, glucose oxidation rates were significantly increased in PI3KαDN hearts when compared to WT, and this metabolic shift has been associated with enhanced IR recovery. However, we found that PI3KαDN hearts still had enhanced recovery when perfused exclusively with fatty acids (FA). We then investigated parallel signaling pathways, and found that mitogen-activated protein kinase signaling was increased in PI3KαDN hearts, possibly through the inhibition of negative feedback loops downstream of PI3Kα.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yjmcc.2012.10.015 | DOI Listing |
Orphanet J Rare Dis
January 2025
Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany.
Background: Cardiac rhabdomyoma (RHM) is considered one of the most frequent benign heart tumors in children. However, encounters with cardiac RHM in clinical practice remain rare. Clinical information is primarily available in the form of single case reports or smaller studies with a shortage of large-scale reviews encompassing a substantial number of cases.
View Article and Find Full Text PDFSuperficial arteriovenous malformations are rare fast-flow lesions. They consist of arteriovenous shunts, without cellular hyperplasia or proliferation, which develop in the surrounding tissues (cutaneous, subcutaneous, muscular, bone). Although benign, they are among the most severe of superficial malformations.
View Article and Find Full Text PDFBMC Vet Res
January 2025
State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China.
Escherichia coli has become a common causative agent of infections in animals, inflicting serious economic losses on livestock production and posing a threat to public health. Escherichia coli infection is common and tends to be complex in Xinjiang, a major region of cattle and sheep breeding in China. This study aims to explore the current status and molecular characteristics of Escherichia coli infection in cattle and sheep in Xinjiang, as part of the disease prevention and control strategy.
View Article and Find Full Text PDFJ Transl Med
January 2025
Aerospace Medical Center, Aerospace Center Hospital, Beijing, China.
Heart-on-a-chip (HoC) devices have emerged as a powerful tool for studying the human heart's intricate functions and dysfunctions in vitro. Traditional preclinical models, such as 2D cell cultures model and animal model, have limitations in accurately predicting human response to cardiovascular diseases and treatments. The HoC approach addresses these shortcomings by recapitulating the microscale anatomy, physiology, and biomechanics of the heart, thereby providing a more clinically relevant platform for drug testing, disease modeling, and personalized therapy.
View Article and Find Full Text PDFCardiooncology
January 2025
Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY, USA.
Background: Heart failure (HF) is associated with systemic inflammation and hypercatabolic syndrome, impacting body metabolism. The advanced lung cancer inflammation index (ALI) is a novel inflammatory and nutritional biomarker. We aimed to investigate the prognostic role of ALI in patients with HF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!