Eye lenses from human donors with and without Alzheimer's disease (AD) were studied to evaluate the presence of amyloid in cortical cataract. We obtained 39 lenses from 21 postmortem donors with AD and 15 lenses from age-matched controls provided by the Banco de Ojos para Tratamientos de la Ceguera (Barcelona, Spain). For 17 donors, AD was clinically diagnosed by general physicians and for 4 donors the AD diagnosis was neuropathologically confirmed. Of the 21 donors with AD, 6 had pronounced bilateral cortical lens opacities and 15 only minor or no cortical opacities. As controls, 7 donors with pronounced cortical opacities and 8 donors with almost transparent lenses were selected. All lenses were photographed in a dark field stereomicroscope. Histological sections were analyzed using a standard and a more sensitive Congo red protocol, thioflavin staining and beta-amyloid immunohistochemistry. Brain tissue from two donors, one with cerebral amyloid angiopathy and another with advanced AD-related changes and one cornea with lattice dystrophy were used as positive controls for the staining techniques. Thioflavin, standard and modified Congo red staining were positive in the control brain tissues and in the dystrophic cornea. Beta-amyloid immunohistochemistry was positive in the brain tissues but not in the cornea sample. Lenses from control and AD donors were, without exception, negative after Congo red, thioflavin, and beta-amyloid immunohistochemical staining. The results of the positive control tissues correspond well with known observations in AD, amyloid angiopathy and corneas with lattice dystrophy. The absence of staining in AD and control lenses with the techniques employed lead us to conclude that there is no beta-amyloid in lenses from donors with AD or in control cortical cataracts. The inconsistency with previous studies of Goldstein et al. (2003) and Moncaster et al. (2010), both of which demonstrated positive Congo red, thioflavin, and beta-amyloid immunohistochemical staining in AD and Down syndrome lenses, is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2012.10.012 | DOI Listing |
Alzheimers Dement
December 2024
Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia.
Background: High-income countries (HICs) are over-represented in current global dementia incidence rates, skewing estimates. Variance in diagnostic methods between HICs and low- and middle-income countries (LMICs) is speculated to contribute to the regional differences in rates. Cohort Studies of Memory in an International Consortium (COSMIC) offers a unique opportunity to address these research inequalities by harmonising data from international studies, including representation from LMICs.
View Article and Find Full Text PDFBackground: Alzheimer's Disease (AD) is neuropathologically characterized by the accumulation of Amyloid-β (Aβ) plaques, neurofibrillary tangles, and neuroinflammation. GPR3 is a G protein-coupled receptor (GPCR) that has been implicated in Aβ pathogenesis via β-arrestin 2 (βarr2)-mediated intracellular signaling. Genetic deletion of Gpr3 reduces the Aβ plaque burden and cognitive decline in AD transgenic mice.
View Article and Find Full Text PDFBackground: Alzheimer's Disease (AD) is the leading form of senile dementia, affecting ∼6 million Americans and having a national economic impact of $321 billion, numbers expected to double by 2050. The major pathological hallmarks of AD include Amyloid Beta (Aβ) plaques and Tau neurofibrillary tangles (NFT). The first goal of this research was to develop novel forms of carbon dots (CD) using various precursors.
View Article and Find Full Text PDFBackground: Several studies have shown the influential role of nutraceuticals on cognition and mental functions. Dihydroxytrimethoxyflavone, a natural flavone found in herbal drugs, is documented to be neuroprotective in different model systems. Nevertheless, possible memory improvement effects of dihydroxytrimethoxyflavone via nuclear factor-E2-related factor 2 (Nrf2) (a crucial regulator of antioxidative system) has not been systematically evaluated.
View Article and Find Full Text PDFBackground: Alzheimer's Disease (AD) is a neurodegenerative disorder whose pathological hallmarks include tau and amyloid beta aggregation, a phenomenon that has been linked to inflammation and degradation of brain tissue. Prior data published in the Wang lab suggests that carbon dots (CDs) synthesized from citric acid and urea can inhibit aggregation. We sought to characterize the inhibitory effects of a new class of CDs synthesized from varied ratios of Congo red and citric acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!