Pericytes have been identified as the major source of precursors of scar-producing myofibroblasts during kidney fibrosis. The underlying mechanisms triggering pericyte-myofibroblast transition are poorly understood. Transforming growth factor β-1 (TGF-β1) is well recognized as a pluripotent cytokine that drives organ fibrosis. We investigated the role of TGF-β1 in inducing profibrotic signaling from epithelial cells to activate pericyte-myofibroblast transition. Increased expression of TGF-β1 was detected predominantly in injured epithelium after unilateral ureteral obstruction, whereas downstream signaling from the TGF-β1 receptor increased in both injured epithelium and pericytes. In mice with ureteral obstruction that were treated with the pan anti-TGF-β antibody (1D11) or TGF-β receptor type I inhibitor (SB431542), kidney pericyte-myofibroblast transition was blunted. The consequence was marked attenuation of fibrosis. In addition, epithelial cell cycle G2/M arrest and production of profibrotic cytokines were both attenuated. Although TGF-β1 alone did not trigger pericyte proliferation in vitro, it robustly induced α smooth muscle actin (α-SMA). In cultured kidney epithelial cells, TGF-β1 stimulated G2/M arrest and production of profibrotic cytokines that had the capacity to stimulate proliferation and transition of pericytes to myofibroblasts. In conclusion, this study identified a novel link between injured epithelium and pericyte-myofibroblast transition through TGF-β1 during kidney fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538028PMC
http://dx.doi.org/10.1016/j.ajpath.2012.09.009DOI Listing

Publication Analysis

Top Keywords

pericyte-myofibroblast transition
20
kidney fibrosis
12
injured epithelium
12
transforming growth
8
growth factor
8
factor β-1
8
activate pericyte-myofibroblast
8
epithelial cells
8
ureteral obstruction
8
g2/m arrest
8

Similar Publications

Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired and lung function declines.

View Article and Find Full Text PDF

Background: Activation of pericytes leads to renal interstitial fibrosis, but the regulatory mechanism of pericytes in the progression from AKI to CKD remains poorly understood. CD36 activation plays a role in the progression of CKD. However, the significance of CD36 during AKI-CKD, especially in pericyte, remains to be fully defined.

View Article and Find Full Text PDF

Background: Endothelial prolyl hydroxylase-2 (PHD2) is essential for pulmonary remodeling and hypertension. In the present study, we investigated the role of endothelial PHD2 in angiotensin II-mediated arterial stiffness, pericyte recruitment, and cardiac fibrosis.

Methods And Results: Chondroitin sulfate proteoglycan 4 tracing reporter chondroitin sulfate proteoglycan 4- red fluorescent protein (DsRed) transgenic mice were crossed with PHD2 (PHD2) mice and endothelial-specific knockout of PHD2 (PHD2KO) mice.

View Article and Find Full Text PDF

Kidney Fibrosis and Matrix Metalloproteinases (MMPs).

Front Biosci (Landmark Ed)

May 2024

Nephrology Unit, Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy.

Chronic kidney disease (CKD) is a disorder that causes changes in both the structure and function of the kidneys, causing complications such as hypertension, edema, and oliguria. Renal fibrosis is also a common pathological feature of CKD. Matrix metalloproteinases (MMPs) are endopeptidases that degrade extracellular matrix (ECM) proteins.

View Article and Find Full Text PDF

Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired due to loss of alveolar structures and lung function declines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!