Biotechnological manipulation of plant defense pathways can increase crop resistance to herbivores and pathogens while also increasing yields of medicinal, industrial, flavor and fragrance compounds. The most successful achievements in engineering defense pathways can be attributed to researchers striving to imitate natural plant regulatory mechanisms. For example, the introduction of transcription factors that control several genes in one pathway is often a valuable strategy to increase flux in that pathway. The use of multi-gene cassettes which mimic natural gene clusters can facilitate coordinated regulation of a pathway and speed transformation efforts. The targeting of defense pathway genes to organs and tissues in which the defensive products are typically made and stored can also increase yield as well as defensive potential.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.copbio.2012.10.014DOI Listing

Publication Analysis

Top Keywords

defense pathways
12
plant defense
8
learning nature
4
nature approaches
4
approaches metabolic
4
metabolic engineering
4
engineering plant
4
defense
4
pathways biotechnological
4
biotechnological manipulation
4

Similar Publications

The role of Exo70s in plant defense against pathogens and insect pests and their application for crop breeding.

Mol Breed

February 2025

National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.

Plant diseases caused by pathogens and pests lead to crop losses, posing a threat to global food security. The secretory pathway is an integral component of plant defense. The exocyst complex regulates the final step of the secretory pathway and is thus essential for secretory defense.

View Article and Find Full Text PDF

With the aim of enhancing plants' ability to respond to pathogenic fungi, this study focuses on disease resistance genes. We commenced a series of investigations by capitalizing on the pronounced differences in resistance to Fusarium wilt between resistant and susceptible varieties. Through an in-depth exploration of the metabolic pathways that bolster this defense, we identified genes associated with resistance to f.

View Article and Find Full Text PDF

Floricoccus penangensis ML061-4 was originally isolated from the leaf surface of an Assam tea plant (Camellia sinensis var. assamica) from Northern Thailand. To assess the functions encoded by the F.

View Article and Find Full Text PDF

Introduction: Abnormal cardiorespiratory symptoms and investigative findings in service personnel typically result in prolonged investigation and occupational restriction. This analysis aimed to assess the impact of the xford ilitary Cardiopulmonary xercise Testing linic (OMEC), which investigates such symptoms and findings, on occupational recommendations.

Methods: A service evaluation was conducted on all OMEC attendances over a 5-year period.

View Article and Find Full Text PDF

Transcription factors SlNOR and SlNOR-like1 regulate steroidal glycoalkaloids biosynthesis in tomato fruit.

Int J Biol Macromol

January 2025

College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:

Steroidal glycoalkaloids (SGAs) are specialized metabolites in Solanaceae that serve as defensive compounds and undergo significant compositional changes during fruit ripening. This study explored the roles of transcription factors SlNOR and SlNOR-like1 in SGAs biosynthesis during tomato fruit development. UPLC-MS/MS revealed dynamic changes in four major SGAs: tomatidine, β-tomatine, α-tomatine, and Esculeoside A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!