Acellular vaccines containing bacterial immunodominant components such as surface proteins may be potent alternatives to live attenuated vaccines in order to reduce salmonellosis risk to human health. invH gene, an important part of needle complex in type three secretion system (TTSS) plays important role in efficient bacterial adherence and entry into epithelial cells. In this work we hypothesize that use of a 15 kDa recombinant InvH as Salmonella enterica serovar Enteritidis surface protein could provoke antibody production in mouse and would help us study feasibility of its potential for diagnosis and/or a recombinant vaccine. The purified InvH provoked significant rise of IgG in mice. Active protection induced by immunization with InvH against variable doses of S. enterica serovar Enteritidis, indicated that the immunized mice were completely protected against challenge with 10(4) LD(50). The immunoreaction of sera from immunized mice with other Salmonella strains or cross reaction with sera of Salmonella strains inoculated mice is indicative of possessing by Salmonella strains of the surface protein, InvH, that can be employed in both prophylactic and diagnostic measures against S. enterica. Bacteria free spleen and ileum of the immunized mice in this study indicate that the invH gene affects bacterial invasion. Efficacy of the virulence protein, InvH, in shuttling into host cells in injectisome of S. enterica serovar Enteritidis and inhibition of this phenomenon by active immunization was shown in this study. In conclusion immunization with InvH protein can develop protection against S. enterica serovar Enteritidis infections. InvH in Salmonella strains can be exploited in protective measures as well as a diagnostic tool in Salmonella infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2012.09.002 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
This study investigates how microbiome colonization influences the development of intestinal type 3 immunity in neonates. The results showed that reduced oxygen levels in the small intestine of neonatal rats induced by Saccharomyces boulardii accelerated microbiome colonization and type 3 immunity development, which protected against Salmonella enterica serovar Typhimurium infection. Microbiome maturation increased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and hyocholic acid (HCA) levels.
View Article and Find Full Text PDFIran J Microbiol
December 2024
Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Background And Objectives: The most common cause of severe foodborne salmonellosis is Typhimurium. Its interaction with intestinal epithelial cells is little known. Lactic acid bacteria (LAB) were recognized as a prominent probiotic gastrointestinal microbiota of humans and animals that confer health-promoting and protective effects.
View Article and Find Full Text PDFPol J Vet Sci
September 2024
National Diagnostic and Research Veterinary Medical Institute, National Food Safety Center, 15 Pencho Slaveykov blvd, 1606, Sofia, Bulgaria.
Salmonella spp. is an important zoonotic and foodborne pathogen. It is spread worldwide and represents a public health risk.
View Article and Find Full Text PDFFASEB J
December 2024
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
Salmonella enterica serovar Typhimurium (S. Typhimurium) poses a serious threat to human and animal health, and there is an urgent need to develop new therapeutic agents. In our in vivo study, ginsenoside Ro (Ro) reduced the mortality rate of S.
View Article and Find Full Text PDFRes Vet Sci
December 2024
Botswana University of Agriculture and Natural Resources, P/Bag BR 0027, Gaborone, Botswana.
Approximately 20 million cases and 0.15 million human fatalities worldwide each year are caused by Salmonellosis. A mechanistic compartmental model based on ordinary differential equations is proposed to evaluate the effects of temperature and pH on the transmission dynamics of Salmonellosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!