Negative-pressure wound therapy (NPWT) is widely used to improve skin wound healing. Although NPWT has been studied as a treatment for wound closure and healing, the molecular mechanisms explaining its therapeutic effects remain unclear. To investigate the effect of NPWT on gene expression, and to discover the genes most dominantly responding to this treatment during skin wound healing, we applied negative pressure on split-thickness skin graft donor sites from the first postoperative day (POD) to the seventh POD. Biopsies were collected from 4 NPWT-treated and 2 control patients. Two biopsy samples were taken from each patient: one from intact skin before graft harvesting, and one on the seventh POD from the donor site wound. Genome-wide microarrays were performed on all samples. Gene expression changes on the seventh POD were compared between NPWT and control patients, and were analyzed for statistical significance. In addition, we analyzed wound exudates for volume, and for concentrations of leukocytes, erythrocytes, and haemoglobin. NPWT induced major changes in gene expression during healing. These changes ranged from 10-fold induction to 27-fold suppression. The genes most induced were associated with cell proliferation and inflammation, and the most down-regulated genes were linked to epidermal differentiation. Our results provide the first insight into the molecular mechanisms behind NPWT, and suggest that NPWT enhances specific inflammatory gene expression at the acute phase associated with epithelial migration and wound healing. However, its continued use may inhibit epithelial differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.burns.2012.09.014 | DOI Listing |
Blood
January 2025
University of Chicago, Chicago, Illinois, United States.
Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.
View Article and Find Full Text PDFBiol Reprod
January 2025
Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA.
Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616.
The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.
Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.
View Article and Find Full Text PDFTree Physiol
January 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Lab of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
Culm sheaths are capable of photosynthesis and are an important class of non-leaf organs in bamboo plants. The source-sink interaction mechanism has been found to play an important role in the interaction between culm sheaths and internodes in Bambusa multiplex. Research on the regulatory mechanisms of culm sheath senescence is important for the study of internode growth, but reports in this regard are limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!