A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

miR-786 regulation of a fatty-acid elongase contributes to rhythmic calcium-wave initiation in C. elegans. | LitMetric

Background: Rhythmic behaviors are ubiquitous phenomena in animals. In C. elegans, defecation is an ultradian rhythmic behavior: every ∼50 s a calcium wave initiating in the posterior intestinal cells triggers the defecation motor program that comprises three sequential muscle contractions. Oscillatory calcium signaling is central to the periodicity of defecation. The posteriormost intestinal cells function as the pacemaker for this rhythmic behavior, although it is unclear how the supremacy of these cells for calcium-wave initiation is controlled.

Results: We describe how the loss of the mir-240/786 microRNA cluster, which results in arrhythmic defecation, causes ectopic intestinal calcium-wave initiation. mir-240/786 expression in the intestine is restricted to the posterior cells that function as the defecation pacemaker. Genetic data indicate that mir-240/786 functions upstream of the inositol 1,4,5-trisphosphate (IP(3)) receptor. Through rescue analysis, it was determined that miR-786 functions to regulate defecation. Furthermore, we identified elo-2, a fatty-acid elongase with a known role in defecation cycling, as a direct target for miR-786. We propose that the regulation of palmitate levels through repression of elo-2 activity is the likely mechanistic link to defecation.

Conclusions: Together, these data indicate that miR-786 confers pacemaker status on posterior intestinal cells for the control of calcium-wave initiation through the regulation of elo-2 and, subsequently, palmitate levels. We propose that a difference in fatty-acid composition in the posterior intestinal cells may alter the activities of membrane proteins, such as IP(3)-receptor or TRPM channels, that control pacemaker activity in the C. elegans intestine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586602PMC
http://dx.doi.org/10.1016/j.cub.2012.09.047DOI Listing

Publication Analysis

Top Keywords

calcium-wave initiation
16
intestinal cells
16
posterior intestinal
12
fatty-acid elongase
8
rhythmic behavior
8
cells function
8
data indicate
8
palmitate levels
8
defecation
7
cells
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!