A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A 28 nt long synthetic 5'UTR (synJ) as an enhancer of transgene expression in dicotyledonous plants. | LitMetric

A 28 nt long synthetic 5'UTR (synJ) as an enhancer of transgene expression in dicotyledonous plants.

BMC Biotechnol

Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.

Published: November 2012

AI Article Synopsis

  • A synthetic 5'UTR called synJ has been developed, shown to significantly boost transgene expression in tobacco and cotton, outperforming traditional methods.
  • The enhancement of gene expression by synJ is evident across various plant tissues, achieving increases of 10 to 50-fold compared to controls, and demonstrating stronger results than some viral leader sequences.
  • This study indicates the vital role of 5'UTRs in maximizing promoter efficacy, leading to the creation of new cloning vectors that enable high levels of transgene expression in genetically modified plants.

Article Abstract

Background: A high level of transgene expression is required, in several applications of transgenic technology. While use of strong promoters has been the main focus in such instances, 5'UTRs have also been shown to enhance transgene expression. Here, we present a 28 nt long synthetic 5'UTR (synJ), which enhances gene expression in tobacco and cotton.

Results: The influence of synJ on transgene expression was studied in callus cultures of cotton and different tissues of transgenic tobacco plants. The study was based on comparing the expression of reporter gene gus and gfp, with and without synJ as its 5'UTR. Mutations in synJ were also analyzed to identify the region important for enhancement. synJ, enhances gene expression by 10 to 50 fold in tobacco and cotton depending upon the tissue studied. This finding is based on the experiments comparing the expression of gus gene, encoding the synJ as 5'UTR under the control of 35S promoter with expression cassettes based on vectors like pBI121 or pRT100. Further, the enhancement was in most cases equivalent to that observed with the viral leader sequences known to enhance translation like Ω and AMV. In case of transformed cotton callus as well as in the roots of tobacco transgenic plants, the up-regulation mediated by synJ was much higher than that observed in the presence of both Ω as well as AMV. The enhancement mediated by synJ was found to be at the post-transcriptional level. The study also demonstrates the importance of a 5'UTR in realizing the full potential of the promoter strength. synJ has been utilized to design four cloning vectors: pGEN01, pBGEN02, pBGEN02-hpt and pBGEN02-ALSdm each of which can be used for cloning the desired transgene and achieving high level of expression in the resulting transgenic plants.

Conclusions: synJ, a synthetic 5'UTR, can enhance transgene expression under a strong promoter like 35S as well as under a weak promoter like nos in dicotyledonous plants. synJ can be incorporated as the 5'UTR of transgenes, especially in cases where high levels of expression is required. A set of vectors has also been designed to facilitate this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536603PMC
http://dx.doi.org/10.1186/1472-6750-12-85DOI Listing

Publication Analysis

Top Keywords

transgene expression
20
synthetic 5'utr
12
synj
12
expression
12
long synthetic
8
5'utr synj
8
dicotyledonous plants
8
high level
8
expression required
8
enhance transgene
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!