A persistent presence in space can either be supported from Earth or generate the required resources for human survival from material already present in space, so called "in situ material." Likely, many of these resources such as water or oxygen can best be liberated from in situ material by conventional physical and chemical processes. However, there is one critical resource required for human life that can only be produced in quantity by biological processes: high-protein food. Here, recent data concerning the materials available on the Moon and common asteroid types is reviewed with regard to the necessary materials to support the production of food from material in situ to those environments. These materials and their suitability as feedstock for the biological production of food are reviewed in a broad and general way such that terminology that is often a barrier to understanding such material by interdisciplinary readers is avoided. The waste products available as in situ materials for feasibility studies on the International Space Station are also briefly discussed. The conclusion is that food production in space environments from in situ material proven to exist there is quite feasible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ast.2012.0829 | DOI Listing |
ChemSusChem
December 2024
Green Carbon Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
Pentose oxidation and reduction, processes yielding value-added sugar-derived acids and alcohols, typically involve separate procedures necessitating distinct reaction conditions. In this study, a novel one-pot reaction for the concurrent production of xylonic acid and xylitol from xylose is proposed. This reaction was executed at ambient temperature in the presence of a base, eliminating the need for external gases, by leveraging Pt-supported catalysts.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
United States Department of Agriculture, Agricultural Research Service, Foreign Disease/Weed Science Research Unit, Frederick, MD, USA.
Fluorescence in situ hybridization enables the visualization of organisms in the environment without having to culture them. Here, we describe a FISH protocol to visualize oomycete structures (mycelia, sporangiophores, sporangia, and oospores) directly as well as from colonized plant material. The protocol utilizes organic compounds with low toxicities and does not require a permeabilization step.
View Article and Find Full Text PDFInt J Surg
December 2024
Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China.
Background: Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN.
Materials And Methods: Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals.
Nanomaterials (Basel)
December 2024
Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, China.
The in situ and label-free detection of molecular information in biological cells has always been a challenging problem due to the weak Raman signal of biological molecules. The use of various resonance nanostructures has significantly advanced Surface-enhanced Raman spectroscopy (SERS) in signal enhancement in recent years. However, biological cells are often immersed in different formulations of culture medium with varying refractive indexes and are highly sensitive to the temperature of the microenvironment.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
The COVID-19 pandemic has prompted the need for the development of new biosensors for SARS-CoV-2 detection. Particularly, systems with qualities such as sensitivity, fast detection, appropriate to large-scale analysis, and applicable in situ, avoiding using specific materials or personnel to undergo the test, are highly desirable. In this regard, developing an electrochemical biosensor based on peptides derived from the angiotensin-converting enzyme receptor 2 (ACE2) is a possible answer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!