A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated image analysis of skeletal muscle fiber cross-sectional area. | LitMetric

Automated image analysis of skeletal muscle fiber cross-sectional area.

J Appl Physiol (1985)

College of Health Sciences, University of Kentucky, Lexington, Kentucky 40536, USA.

Published: January 2013

Morphological characteristics of muscle fibers, such as fiber size, are critical factors that determine the health and function of the muscle. However, at this time, quantification of muscle fiber cross-sectional area is still a manual or, at best, a semiautomated process. This process is labor intensive, time consuming, and prone to errors, leading to high interobserver variability. We have developed and validated an automatic image segmentation algorithm and compared it directly with commercially available semiautomatic software currently considered state of the art. The proposed automatic segmentation algorithm was evaluated against a semiautomatic method with manual annotation using 35 randomly selected cross-sectional muscle histochemical images. The proposed algorithm begins with ridge detection to enhance the muscle fiber boundaries, followed by robust seed detection based on concave area identification to find initial seeds for muscle fibers. The final muscle fiber boundaries are automatically delineated using a gradient vector flow deformable model. Our automatic approach is accurate and represents a significant advancement in efficiency; quantification of fiber area in muscle cross sections was reduced from 25-40 min/image to 15 s/image, while accommodating common quantification obstacles including morphological variation (e.g., heterogeneity in fiber size and fibrosis) and technical artifacts (e.g., processing defects and poor staining quality). Automatic quantification of muscle fiber cross-sectional area using the proposed method is a powerful tool that will increase sensitivity, objectivity, and efficiency in measuring muscle adaptation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544517PMC
http://dx.doi.org/10.1152/japplphysiol.01022.2012DOI Listing

Publication Analysis

Top Keywords

muscle fiber
20
fiber cross-sectional
12
cross-sectional area
12
muscle
11
fiber
8
muscle fibers
8
fiber size
8
quantification muscle
8
segmentation algorithm
8
fiber boundaries
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!