Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Morphological characteristics of muscle fibers, such as fiber size, are critical factors that determine the health and function of the muscle. However, at this time, quantification of muscle fiber cross-sectional area is still a manual or, at best, a semiautomated process. This process is labor intensive, time consuming, and prone to errors, leading to high interobserver variability. We have developed and validated an automatic image segmentation algorithm and compared it directly with commercially available semiautomatic software currently considered state of the art. The proposed automatic segmentation algorithm was evaluated against a semiautomatic method with manual annotation using 35 randomly selected cross-sectional muscle histochemical images. The proposed algorithm begins with ridge detection to enhance the muscle fiber boundaries, followed by robust seed detection based on concave area identification to find initial seeds for muscle fibers. The final muscle fiber boundaries are automatically delineated using a gradient vector flow deformable model. Our automatic approach is accurate and represents a significant advancement in efficiency; quantification of fiber area in muscle cross sections was reduced from 25-40 min/image to 15 s/image, while accommodating common quantification obstacles including morphological variation (e.g., heterogeneity in fiber size and fibrosis) and technical artifacts (e.g., processing defects and poor staining quality). Automatic quantification of muscle fiber cross-sectional area using the proposed method is a powerful tool that will increase sensitivity, objectivity, and efficiency in measuring muscle adaptation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544517 | PMC |
http://dx.doi.org/10.1152/japplphysiol.01022.2012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!