A potentially viable approach for treating late-stage prostate cancer is gene therapy. Successful gene therapy requires safe and efficient delivery systems. In this study, we report the efficient delivery of small interfering RNA (siRNA) via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. On the basis of previous findings, cyclic Arg-Gly-Asp (cRGD) peptides were conjugated to NPs to recognize the target site, integrin αvβ3, expressed in high levels in PC-3 prostate cancer cells. The suppression of angiogenesis by the downregulation of vascular endothelial growth factor (VEGF) expression has been widely used to inhibit the growth of malignant tumors. In our study, human VEGF (hVEGF)-siRNA was encapsulated in NPs to inhibit VEGF expression in PC-3 cells. Concurrently, sonoporation induced by ultrasound-targeted microbubble destruction (UTMD) was utilized for the delivery of siRNA-loaded NPs. Our results showed low cytotoxicity and high gene transfection efficiency, demonstrating that the targeted delivery of biodegradable NPs with UTMD may be potentially applied as new vector system for gene delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijmm.2012.1175 | DOI Listing |
PLoS One
January 2025
School of Nursing and Midwifery, University of Rwanda, Kigali, Rwanda.
Introduction: The World Health Organization (WHO) has emphasized the importance of ensuring respectful and dignified childbirth experiences. However, many countries, including Rwanda, have documented negative experiences during childbirth. Identifying best practices can help uncover sustainable solutions for resource-limited settings rather than focusing solely on the challenges and negative aspects.
View Article and Find Full Text PDFLangmuir
January 2025
Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States.
Nanocarriers have shown significant promise in the diagnosis and treatment of various diseases, utilizing a wide range of biocompatible materials such as metals, inorganic substances, and organic components. Despite diverse design strategies, key physicochemical properties, including hydrodynamic diameter, shape, surface charge, and hydrophilicity/lipophilicity, are crucial for optimizing biodistribution, pharmacokinetics, and therapeutic efficacy. However, these properties are often influenced by drug payload, presenting an ongoing challenge in developing versatile platform technologies for theranostics.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Statistics, Shahjalal University of Science & Technology, Sylhet, Bangladesh.
Background: Maternal tetanus toxoid (MTT) vaccination during pregnancy remains an important factor for reducing infant mortality globally, especially in developing nations, including Bangladesh. Despite commendable progress in reducing child mortality through widespread MTT vaccination during pregnancy, the issue still exists. This analysis explores the impact of MTT vaccination on neonatal mortality in Bangladesh and identifies associated factors.
View Article and Find Full Text PDFSci Adv
January 2025
School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).
View Article and Find Full Text PDFACS Nano
January 2025
CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States.
Since their inception in the early 1960s, the development and use of nanoscale materials have progressed tremendously, and their roles in diverse fields ranging from human health to energy and electronics are undeniable. The application of nanotechnology inventions has revolutionized many aspects of everyday life including various medical applications and specifically drug delivery systems, maximizing the therapeutic efficacy of the contained drugs by means of bioavailability enhancement or minimization of adverse effects. In this review, we utilize the CAS Content Collection, a vast repository of scientific information extracted from journal and patent publications, to analyze trends in nanoscience research relevant to drug delivery in an effort to provide a comprehensive and detailed picture of the use of nanotechnology in this field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!