This paper presents a detailed electrochemical impedance spectroscopy and cyclic voltammetry (CV) investigation into the electrocatalytic activity of ultrafine (i.e., smaller than 2 nm) platinum (Pt) nanoparticles generated on a fluorine-doped tin oxide (FTO) surface via room temperature tilted target sputter deposition. In particular, the Pt-decorated FTO electrode surfaces were tested as counter electrode candidates for triiodide (I3(-)) reduction in dye-sensitized solar cells (DSSCs). We observed a direct correlation between size-dependent Pt nanoparticle crystallinity and the I3(-) reduction activity underlying DSSC performance. CV analysis confirmed the higher electrocatalytic activities of sputter-deposited crystalline Pt nanoparticles (1-2 nm) compared with either sub-nanometre Pt clusters or a continuous Pt thin film. While the low catalytic activity and DSSC performance of Pt clusters smaller in size than 1 nm is believed to arise from their non-crystalline nature and charge-trapping attributes, we attribute the high catalytic performance of larger Pt nanoparticles in the 1-2 nm regime to their well-defined crystallinity and fast electron transfer kinetics. For DSSC applications, the optimized Pt loading was calculated to be ~2.54 × 10(-7) g cm(-2), which corresponds to surface coverage by ~1.6 nm sized Pt nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/23/48/485405 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!