We studied peculiarities of the structural reconstruction within holographically recorded gratings on the surface of several different amorphous azobenzene-containing polymers. Under illumination with a light interference pattern, two processes take place in this type of polymer. The first process is the light-induced orientation of azobenzene units perpendicular to the polarization plane of the incident light. The second one is a transfer of macromolecules along the grating vector (i.e. perpendicular to the grating lines). These two processes result in the creation of a volume orientation grating (alternating regions of different direction or degree of molecular orientation) and a surface relief grating (SRG)-i.e. modulation of film thickness. One can assume that both orientation of molecules and their movement might change the local mechanical properties of the material. Therefore, formation of the SRG is expected to result also in modulation of the local stiffness of the polymer film. To reveal and investigate these stiffness changes within the grating, spin-coated polymer films were prepared and the gratings were recorded on them in two different ways: with an orthogonal circular or orthogonal linear polarization of two recording light beams. A combination of atomic force microscopy (AFM) and ultrasonic force microscopy (UFM) techniques was applied for SRG development monitoring. We demonstrate that formation of the phase gratings depends on the chemical structure of polymers being used, polymer film thickness, and recording parameters, with the height of grating structures (depth of modulation) increasing with both the exposure time and the film thickness. UFM images suggest that the slopes of the topographic peaks in the phase gratings exhibit an increased stiffness with respect to the grating depressions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/23/48/485309 | DOI Listing |
ACS Nano
December 2024
Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.
As the keystones of molecular electronics, high-quality nanodielectric layers are challenging to assemble due to the strictest criteria for their reliability and uniformity over a large area. Here, we report a strained poly(4-vinylphenol) monolayer, ready to be stacked to form defect-free wafer-scale nanodielectrics. The thickness of the nanodielectrics can be precisely adjusted in integral multiples of the 1.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:
Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.
View Article and Find Full Text PDFNano Lett
December 2024
Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.
Rutile GeO and related materials are attracting interest due to their ultrawide band gaps and potential for ambipolar doping in high-power electronic applications. This study examines the growth of rutile SnGeO films through oxygen-plasma-assisted hybrid molecular beam epitaxy (hMBE). The film composition and thickness are evaluated across a range of growth conditions, with the outcomes rationalized by using density functional theory calculations.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.
This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p-n junction diodes, etc. are a few of the best uses for this material.
View Article and Find Full Text PDFAppl Spectrosc
December 2024
Chair of Waste Processing Technology and Waste Management, Department of Environmental and Energy Process Engineering, Montanuniversitaet Leoben, Leoben, Austria.
The low thickness of plastic films poses a challenge when using near-infrared (NIR) spectroscopy as it affects the spectral quality and classification. This research focuses on offering a solution to the challenge of classifying multilayer plastic film materials with a focus on polyolefin multilayer plastics. It presents the importance of spectral quality on accurate classification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!