α-Linolenic acid (ALA), a major fatty acid in flaxseed oil, has multiple functionalities such as anti-cardiovascular and anti-hypertensive activities. In this study, we investigated the effects of ALA on lipid metabolism and studied the possible mechanisms of its action in differentiated 3T3-L1 adipocytes using DNA microarray analysis. From a total of 34,325 genes in the DNA chip, 87 genes were down-regulated and 185 genes were up-regulated at least twofold in differentiated 3T3-L1 adipocyte cells treated with 300 μM ALA for a week, 5-12 days after induction of cell differentiation, compared to ALA-untreated 3T3-L1 adipocytes (control). From the Reactome analysis results, eight lipid metabolism-related genes involved in cholesterol and triacylglycerol biosynthesis pathway and lipid transport were significantly down-regulated by ALA treatment. Furthermore, ALA significantly decreased the mRNA expressions of sterol regulatory element binding protein (SREBP)-2, SREBP-1a, SREBP-1c and fatty acid synthase (FAS) in 3T3-L1 adipocyte cells. On the other hand, the average levels of the gene expressions of carnitine palmitoyltransferase 1a (CPT-1a) and leptin in 300 μM ALA treatment were increased by 1.7- and 2.9-fold, respectively, followed by an increase in the intracellular ATP content. These results show that ALA is likely to inhibit cholesterol and fatty acid biosynthesis pathway by suppressing the expression of transcriptional factor SREBPs. Furthermore, ALA promotes fatty acid oxidation in 3T3-L1 adipocytes, thereby increasing its health benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853632PMC
http://dx.doi.org/10.1007/s10616-012-9510-xDOI Listing

Publication Analysis

Top Keywords

fatty acid
16
biosynthesis pathway
12
3t3-l1 adipocytes
12
α-linolenic acid
8
cholesterol triacylglycerol
8
triacylglycerol biosynthesis
8
pathway suppressing
8
srebp-2 srebp-1a
8
ala
8
differentiated 3t3-l1
8

Similar Publications

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.

View Article and Find Full Text PDF

Biogenesis of membrane-bound organelles involves the synthesis, remodeling, and degradation of their constituent phospholipids. How these pathways regulate organelle size remains poorly understood. Here we demonstrate that a lipid-degradation pathway inhibits expansion of the endoplasmic reticulum (ER) membrane.

View Article and Find Full Text PDF

Limnobacter olei sp. nov., a Novel Diesel-Degrading Bacterium Isolated from Oil-Contaminated Soil.

Curr Microbiol

January 2025

Jiangsu Longhuan Environmental Science Co. LTD, Changzhou, 213164, China.

A bacterial strain P1, capable of degrading diesel and converting thiosulfate to sulfate was isolated from an oil-contaminated soil sample. The cells were Gram-stain-negative, slightly curved rods and motile with a single polar flagellum. Growth of the strain was observed at 4-45 °C (optimum at 28 °C), at pH 4.

View Article and Find Full Text PDF

Edible Berries-An Update on Nutritional Composition and Health Benefits-Part II.

Curr Nutr Rep

January 2025

Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.

Purpose Of Review: Berries are a great source of fiber, polyunsaturated fatty acids, and beneficial secondary metabolites (polyphenols). Various phytochemicals present in berries (glycosidic-linked flavonoids, anthocyanins, etc.) provide potential health benefits to consumers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!