Optofluidic imaging: now and beyond.

Lab Chip

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.

Published: January 2013

More than a decade of research work in optofluidics has yielded a large catalogue of optofluidic elements that can manipulate light at the micro-scale (e.g., lenses, prisms). Although these elements have proven useful for many on-chip processes (e.g., miniaturized flow cytometry, interferometry and sample spectroscopy), certain deficiencies have precluded their use in micro-scale imaging. However, recent work in optofluidic imaging has avoided optofluidic elements entirely and focused instead on image capture and composition techniques, demonstrating impressive resolution in both 2D imagery and 3D tomography. In this Focus article, we will discuss some of the recent successes in optofluidic imaging and will expound our expectations for the near future of the optofluidic imaging discipline.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994168PMC
http://dx.doi.org/10.1039/c2lc90127gDOI Listing

Publication Analysis

Top Keywords

optofluidic imaging
16
optofluidic elements
8
optofluidic
6
imaging decade
4
decade work
4
work optofluidics
4
optofluidics yielded
4
yielded large
4
large catalogue
4
catalogue optofluidic
4

Similar Publications

In many experiments, nanoparticles are located inside a microfluidic channel, and the light scattered by the particles becomes diffracted through the walls of the capillary. We here derive a simple but accurate approach for simulating the imaging of light through a cylindrical capillary under the assumption that the dimensions of the capillary are much larger than the wavelength of light. A comparison of the simulated images with experimental results shows very good agreement.

View Article and Find Full Text PDF

Here, we present the concept of flat-field capillary-assisted nanoparticle tracking analysis for the characterization of fast diffusing nano-objects. By combining diffusion confinement and spatially invariant illumination, i.e.

View Article and Find Full Text PDF

Novel application of metabolic imaging of early embryos using a light-sheet on-a-chip device: a proof-of-concept study.

Hum Reprod

January 2025

Education Program in Reproduction and Development, EPRD, Department of obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.

Study Question: Is it feasible to safely determine metabolic imaging signatures of nicotinamide adenine dinucleotide [NAD(P)H] associated auto-fluorescence in early embryos using a light-sheet on-a-chip approach?

Summary Answer: We developed an optofluidic device capable of obtaining high-resolution 3D images of the NAD(P)H autofluorescence of live mouse embryos using a light-sheet on-a-chip device as a proof-of-concept.

What Is Known Already: Selecting the most suitable embryos for implantation and subsequent healthy live birth is crucial to the success rate of assisted reproduction and offspring health. Besides morphological evaluation using optical microscopy, a promising alternative is the non-invasive imaging of live embryos to establish metabolic activity performance.

View Article and Find Full Text PDF
Article Synopsis
  • * The group organizes MiFoBio conferences that feature lectures and hands-on workshops, allowing specialists to share insights and reflect on the evolution of microscopy over the years.
  • * The 2023 conference included retrospective talks on key topics like multicellular imaging and advancements in imaging technologies, with summaries available on the ImaBio YouTube channel for further learning.
View Article and Find Full Text PDF

Nanoplasmonic Single-Tumoroid Microarray for Real-Time Secretion Analysis.

Adv Sci (Weinh)

September 2024

Bionanophotonic Systems Laboratory, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.

Organoid tumor models have emerged as a powerful tool in the fields of biology and medicine as such 3D structures grown from tumor cells recapitulate better tumor characteristics, making these tumoroids unique for personalized cancer research. Assessment of their functional behavior, particularly protein secretion, is of significant importance to provide comprehensive insights. Here, a label-free spectroscopic imaging platform is presented with advanced integrated optofluidic nanoplasmonic biosensor that enables real-time secretion analysis from single tumoroids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!