Gas-phase energetics of thorium fluorides and their ions.

J Phys Chem A

Computational Chemistry Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA.

Published: February 2013

Gas-phase thermochemistry for neutral ThF(n) and cations ThF(n)(+) (n = 1-4) is obtained from large-basis CCSD(T) calculations, with a small-core pseudopotential on thorium. Electronic partition functions are computed with the help of relativistic MRCI calculations. Geometries, vibrational spectra, electronic fine structure, and ion appearance energies are tabulated. These results support the experimental results by Lau, Brittain, and Hildenbrand for the neutral species, except for ThF. The ion thermochemistry is presented here for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp3061703DOI Listing

Publication Analysis

Top Keywords

gas-phase energetics
4
energetics thorium
4
thorium fluorides
4
fluorides ions
4
ions gas-phase
4
gas-phase thermochemistry
4
thermochemistry neutral
4
neutral thfn
4
thfn cations
4
cations thfn+
4

Similar Publications

Atomically precise clusters such as [Pt(CO)(PPh)] ( = 1,2) (PPh is triphenylphosphine) are known as precursors for making oxidation catalysts. However, the changes occurring to the cluster upon thermal activation during the formation of the active catalyst are poorly understood. We have used a combination of hybrid mass spectrometry and surface science to map the thermal decomposition of [Pt(CO)(PPh)](NO).

View Article and Find Full Text PDF

Rate coefficients for ion-polar-molecule reactions between acetonitrile molecules (CHCN) and nitrogen molecular ions (N), which are of importance to the upper atmospheric chemistry of Saturn's moon Titan, were measured for the first time at low translational temperatures. In the experiments, the reaction between sympathetically cooled N ions embedded in laser-cooled Ca Coulomb crystals and velocity-selected acetonitrile molecules generated using a wavy Stark velocity filter was studied to determine the reaction rate coefficients. Capture rate coefficients calculated by the Su-Chesnavich approach and by the perturbed rotational state theory considering the rotational state distribution of CHCN were compared to the experimental rate coefficients.

View Article and Find Full Text PDF

Exploring the Vibrational Coherences in the Ultrafast Electronic Relaxation of Pyrimidine Nucleobases and Nucleosides.

J Am Chem Soc

January 2025

Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan.

We studied the vibrational coherences during the ultrafast internal conversions (ICs) of pyrimidine nucleobases and -sides in aqueous solutions and the gas phase with an instrumental resolution of 14 fs. The coherence of the same ring-breathing vibrational mode with a frequency of 750 cm was observed. In the gas phase, the vibrational coherence was transferred during IC from the ππ* to the nπ* state, and it survived for approximately 1 ps.

View Article and Find Full Text PDF

The oxidation of CHCO by (Δ) O has been investigated by means of high level quantum chemical and chemical kinetic calculations. The reaction was found to proceed through a four-membered cyclic transition state resulting from the addition of O to the CC bond of ketene. The reaction energetics has been calculated employing post-CCSD(T) corrections.

View Article and Find Full Text PDF

High-nitrogen-content energetic BN ( = 4-16) clusters.

Phys Chem Chem Phys

December 2024

School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.

Nitrogen-rich materials have attracted considerable attention in recent years as potential high-energy-density materials (HEDMs). However, their metastability poses substantial challenges for synthesis under ambient conditions. Here, we employ a novel strategy to explore energetic and structural features of the nitrogen-rich BN ( = 4-16) clusters by doping with the light non-metal boron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!