A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced Akt phosphorylation and myogenic differentiation in PI3K p110β-deficient myoblasts is mediated by PI3K p110α and mTORC2. | LitMetric

AI Article Synopsis

  • Phosphoinositide 3-kinase p110β negatively regulates Akt activation and myogenesis, as its deficiency leads to increased Akt phosphorylation in response to growth factors like IGF-I.
  • The absence of p110β also enhances the expression of myogenic markers during the early stages of muscle cell differentiation.
  • Additionally, the study suggests that the loss of p110β results in specific agonist-induced Akt hyperactivation, indicating its crucial but repressive role in these processes.

Article Abstract

Phosphoinositide 3-kinase (PI3K) is a principal regulator of Akt activation and myogenesis; however, the function of PI3K p110β in these processes is not well defined. To address this, we investigated the role of p110β in Akt activation and skeletal muscle cell differentiation. We found that Akt phosphorylation was enhanced in p110β-deficient myoblasts in response to Insulin-like Growth Factor-I (IGF-I), epidermal growth factor, or p110α overexpression, as compared to p110β-sufficient cells. This effect was associated with increased mammalian target of rapamycin complex 2 activation, even in myoblasts deficient in mSin1 and rictor. Conversely, in response to the G-protein-coupled receptor agonist lysophosphatidic acid, Akt phosphorylation was attenuated in p110β-deficient myoblasts. Loss of p110β also enhanced the expression of myogenic markers at the myoblast stage and during the first 48 h of differentiation. These data demonstrate that reductions in p110β are associated with agonist-specific Akt hyperactivation and accelerated myogenesis, thus revealing a negative role for p110β in Akt activation and during myoblast differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.3109/08977194.2012.734507DOI Listing

Publication Analysis

Top Keywords

akt phosphorylation
12
p110β-deficient myoblasts
12
akt activation
12
role p110β
8
p110β akt
8
akt
6
p110β
5
enhanced akt
4
phosphorylation myogenic
4
differentiation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!