Peptide fragmentations into b- and y-type ions are useful for the identification of proteins. The b ion, having the structure of a N-protonated oxazolone, dissociates to the a-type ion with loss of CO. This CO-loss process affords the possibility of characterizing the temperature of the b ion. Herein, we used N-acylated dipeptide tags, isobaric tags originally developed for protein quantification, as internal standards for the measurement of the ion temperature in peptide fragmentation. Amine-reactive dipeptide tags were attached to the N-termini of sample peptides. Collision-induced dissociation (CID) of the tagged peptides yielded a b-type quantitation signal (b(S)) from the tag, which subsequently dissociated into the a(S) ion with CO-loss. As the length of alkyl side chain on the dipeptide tag was extended from C(1) to C(8), the yield of a(S) ion gradually increased for the 4-alkyl-substituted oxazolone ion but decreased for the 2-alkyl-substituted one. To gain insights into the unimolecular dissociation kinetics, we obtained the potential energy surface from ab initio calculations. Theoretical study suggested that the 4-alkyl substitution on N-protonated oxazolone decreased the enthalpy of activation by stabilizing the productlike transition state, whereas the 2-alkyl substitution increased it by stabilizing the reactant. Resulting potential energy surfaces were used to calculate the microcanonical and canonical rate constants as well as the a(S)-ion yield. Arrhenius plots of canonical rate constants provided activation energies and pre-exponential factors for the CO-loss processes in the 600-800 K range. Comparison of experimental a(S)-ion yields with theoretical values led to precise determination of the temperature of b(S) ion. Thus, the b(S)-ion temperature of tagged peptide can be measured simply by combining kinetic parameters provided here and a(S)-ion yields obtained experimentally. Although the b-type fragment patterns varied with the chain length and position of alkyl substituent on the N-protonated oxazolone, the y-type fragment patterns were almost identical under these conditions. Furthermore, b(S)-ion temperatures were nearly the same with only a few degrees K difference. Our results demonstrate a novel use of N-acylated dipeptide tags as internal temperature standards, which enables the reproducible acquisition of peptide fragment spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp308697vDOI Listing

Publication Analysis

Top Keywords

dipeptide tags
16
n-acylated dipeptide
12
n-protonated oxazolone
12
ion
9
measurement ion
8
ion temperature
8
temperature peptide
8
peptide fragmentation
8
temperature ion
8
potential energy
8

Similar Publications

Meat adulteration detection is crucial for ensuring food safety, protecting consumer rights, and maintaining market integrity. However, the current methods face challenges in achieving multiplexed detection through efficient signal conversion and output. This study introduces a nanopore-based approach for the simultaneous detection of multiple meat adulteration.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) promotes tumor cell infiltration and metastasis. Tracking the progression of EMT could potentially indicate early cancer metastasis. A key characteristic of EMT is the dynamic alteration in the molecular levels of E-cadherin and N-cadherin.

View Article and Find Full Text PDF

Cucurbit[7,8]urils are known to form inclusion complexes with hydrophobic amino acids such as Trp, Tyr, Phe, and Met, as well as peptides containing these residues at the N-terminus. Despite their widespread use in protein purification, the affinity of histidine (His) for cucurbit[7,8]urils has not been extensively explored. In this study, X-ray diffraction experiments were conducted to investigate the binding of two histidine moieties to the cucurbit[7]uril (CB7) cavity, resulting in a network of π-π and hydrogen bonds.

View Article and Find Full Text PDF

Hexanucleotide repeat expansions in the gene are the most prevalent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Transcripts of the expansions are translated into toxic dipeptide repeat (DPR) proteins. Most preclinical studies in cell and animal models have used protein-tagged polyDPR constructs to investigate DPR toxicity but the effects of tags on DPR toxicity have not been systematically explored.

View Article and Find Full Text PDF

Bioorthogonal chemistry combines well with activity-based protein profiling, as it allows for the introduction of detection tags without significantly influencing the physiochemical and biological functions of the probe. In this work, we introduced methyltetrazinylalanine (MeTz-Ala), a close mimic of phenylalanine, into a dipeptide fluoromethylketone cysteine protease inhibitor. Following covalent and irreversible inhibition, the tetrazine allows vizualisation of the captured cathepsin activity by means of inverse electron demand Diels Alder ligation in cell lysates and live cells, demonstrating that tetrazines can be used as live cell compatible, minimal bioorthogonal tags in activity-based protein profiling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!