Bestatin [(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-leucine], a potent inhibitor of aminopeptidase B and leucine aminopeptidase, enhances the immune response to activate the defense mechanism of the living organism and suppresses the growth and metastasis of cancer. Bestatin has been effectively used by p.o. administration, but the mechanisms of intestinal absorption remain to be solved. The present study was undertaken to examine whether bestatin, a dipeptide containing an unusual amino acid, is transported via dipeptide carriers in intestinal brush-border membranes, by using cephradine as a probe for the H+/dipeptide cotransport system. The initial uptake of cephradine in the presence or absence of an inward H+ gradient, driving force, was inhibited by bestatin and this inhibition occurred in a competitive manner (Ki = 0.47 mM). The uptake of cephradine was stimulated by the countertransport effect of bestatin, the definitive criterion for ascertaining a common transport system. These findings indicate that bestatin, as well as cephradine and other p.o. cephalosporins, can be transported via dipeptide carriers in intestinal brush-border membranes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

intestinal brush-border
12
brush-border membranes
12
h+/dipeptide cotransport
8
cotransport system
8
transported dipeptide
8
dipeptide carriers
8
carriers intestinal
8
uptake cephradine
8
bestatin
7
transport mechanisms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!