We have previously demonstrated that the human papillomavirus (HPV) genome replicates effectively in U2OS cells after transfection using electroporation. The transient extrachromosomal replication, stable maintenance, and late amplification of the viral genome could be studied for high- and low-risk mucosal and cutaneous papillomaviruses. Recent findings indicate that the cellular DNA damage response (DDR) is activated during the HPV life cycle and that the viral replication protein E1 might play a role in this process. We used a U2OS cell-based system to study E1-dependent DDR activation and the involvement of these pathways in viral transient replication. We demonstrated that the E1 protein could cause double-strand DNA breaks in the host genome by directly interacting with DNA. This activity leads to the induction of an ATM-dependent signaling cascade and cell cycle arrest in the S and G(2) phases. However, the transient replication of HPV genomes in U2OS cells induces the ATR-dependent pathway, as shown by the accumulation of γH2AX, ATR-interacting protein (ATRIP), and topoisomerase IIβ-binding protein 1 (TopBP1) in viral replication centers. Viral oncogenes do not play a role in this activation, which is induced only through DNA replication or by replication proteins E1 and E2. The ATR pathway in viral replication centers is likely activated through DNA replication stress and might play an important role in engaging cellular DNA repair/recombination machinery for effective replication of the viral genome upon active amplification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554080PMC
http://dx.doi.org/10.1128/JVI.01943-12DOI Listing

Publication Analysis

Top Keywords

replication centers
12
viral replication
12
play role
12
replication
11
dna damage
8
damage response
8
human papillomavirus
8
u2os cells
8
viral genome
8
cellular dna
8

Similar Publications

Exploring the druggability of the UEV domain of human TSG101 in search for broad-spectrum antivirals.

Protein Sci

January 2025

Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.

The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.

View Article and Find Full Text PDF

Backgroud: Oesophageal cancer ranks among the most prevalent malignant tumours globally, primarily consisting of oesophageal squamous cell carcinoma (ESCC). Cancer stem cells (CSCs) accelerate the progression ESCC via their strong self-renewal and tumourigenic capabilities, presenting significant clinical challenges due to increased risks of recurrence and drug resistance.

Methods: Our previous study has reported WYC-209, which is capable of inducing apoptosis of CSCs in melanoma and hepatoma, but is ineffective against ESCC.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to protect from systemic infection. When employing a novel challenge virus that uses HIV-1 Env for entry into target cells during the first replication cycle, but then switches to SIV Env usage, we demonstrated that bnAbs also prevented mucosal infection of the first cells. However, it remained unclear whether antibody Fc-effector functions contribute to this sterilizing immunity.

View Article and Find Full Text PDF

At the end of cell division, the nuclear envelope reassembles around the decondensing chromosomes. Female meiosis culminates in two consecutive cell divisions of the oocyte, meiosis I and II, which are separated by a brief transition phase known as interkinesis. Due to the absence of chromosome decondensation and the suppression of genome replication during interkinesis, it has been widely assumed that the nuclear envelope does not reassemble between meiosis I and II.

View Article and Find Full Text PDF

Alternative splicing expands the antiviral IFITM repertoire in Chinese rufous horseshoe bats.

PLoS Pathog

December 2024

Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom.

Species-specific interferon responses are shaped by the virus-host arms race. The human interferon-induced transmembrane protein (IFITM) family consists of three antiviral IFITM genes that arose by gene duplication. These genes restrict virus entry and are key players in antiviral interferon responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!