Microarray analysis was used to measure the impact of herbivory by Helicoverpa zea, (corn earworm caterpillar) on wild-type and transgenic tomato, Solanum lycopersicum, plants that over-express peroxidase. Caterpillar herbivory had by far the greatest affect on gene expression, but the peroxidase transgene also altered the expression of a substantial number of tomato genes. Particularly high peroxidase activity resulted in the up-regulation of genes encoding proteinase inhibitors, pathogenesis-related (PR) proteins, as well as proteins associated with iron and calcium transport, and flowering. In a separate experiment conducted under similar conditions, real-time quantitative polymerase chain reaction (qPCR) analysis confirmed our microarray results for many genes. There was some indication that multiple regulatory interactions occurred due to the interaction of the different treatments. While herbivory had the greatest impact on tomato gene expression, our results suggest that levels of expression of a multifunctional gene, such as peroxidase and its products, can influence other gene expression systems distinct from conventional signaling pathways, further indicating the complexity of plant defensive responses to insects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10886-012-0205-8DOI Listing

Publication Analysis

Top Keywords

gene expression
16
corn earworm
8
herbivory greatest
8
expression
6
peroxidase
5
gene
5
effects elevated
4
elevated peroxidase
4
peroxidase levels
4
levels corn
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!