Background: Clinical studies have demonstrated that HPV induced tumors constitute a specific subclass of cancer with a better response to radiation treatment. The purpose of this study was to investigate meaning of viral E2-gene for radiosensitivity.
Methods: W12 cells contain episomal HPV 16 genomes, whereas S12 cells, which derive from the W12 line, contain HPV DNA as integrated copies. Clonogenic survival was analyzed using 96-well in vitro test. Using flow cytometry cell cycle analyses were performed. Expression of pRb and p53 were analyzed using intracellular staining.
Results: W12 cells (intact E2 gene) showed a lower survival fraction than S12 cells. W12 cells developed a G2/M block 24 h after irradiation with 2 Gy whereas S12 showed no G2/M bloc. After irradiation S12 cells developed polyploidy and pRb-positive cells decreased. W12 cells showed no change of pRb-positive cells.
Conclusions: Depending on E2 gene status differences in cell cycle regulation might cause radioresistance. The E2/E7/pRb pathway seems to influence HPV-induced radiosensitivity. Our experiments demonstrated an effect of HPV on radiosensitivity of cervical keratinocytes via viral transcription regulator E2 pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542163 | PMC |
http://dx.doi.org/10.1186/1748-717X-7-187 | DOI Listing |
Viruses
December 2024
Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, HHSC-1518, 701 W. 168th Street, New York, NY 10032, USA.
This study explores the effects of plant compounds on human papillomavirus (HPV)-induced W12 cervical precancer cells and bioelectric signaling. The aim is to identify effective phytochemicals, both individually and in combination, that can prevent and treat HPV infection and HPV associated cervical cancer. Phytochemicals were tested using growth inhibition, combination, gene expression, RT PCR, and molecular docking assays.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Division of Interventional and Surgical Science, Royal Free Campus, University College London, London NW3 2QG, UK.
Liver ischaemia-reperfusion (IR) injury remains a major cause of morbidity and mortality following liver transplantation and resection. CD4+ T cells have been shown to play a key role in murine models; however, there is currently a lack of data that support their role in human patients. Data on clinical outcomes and complications were documented prospectively in 28 patients undergoing first elective liver transplant surgery.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
Most current highly efficient organic solar cells utilize small molecules like Y6 and its derivatives as electron acceptors in the photoactive layer. In this work, a small molecule acceptor, SC8-IT4F, is developed through outer side chain engineering on the terminal thiophene of a conjugated 6,12-dihydro-dithienoindeno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IDTT) central core. Compared to the reference molecule C8-IT4F, which lacks outer side chains, SC8-IT4F displays notable differences in molecule geometry (as shown by simulations), thermal behavior, single-crystal packing, and film morphology.
View Article and Find Full Text PDFBiochem Soc Trans
January 2025
Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K.
Biological mechanotransduction enables cells to sense and respond to mechanical forces in their local environment through changes in cell structure and gene expression, resulting in downstream changes in cell function. However, the complexity of living systems obfuscates the mechanisms of mechanotransduction, and hence the study of these processes in vitro has been critical in characterising the function of existing mechanosensitive membrane proteins. Synthetic cells are biomolecular compartments that aim to mimic the organisation, functionality and behaviours of biological systems, and represent the next step in the development of in vitro cell models.
View Article and Find Full Text PDFCell
January 2025
Clinical Pediatrics Unit, Department of Women's and Children's Health, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Immunology and Inflammation, Imperial College London, London W12 EH7, UK; Medical Research Council, Laboratory of Medical Sciences, Imperial College Hammersmith Campus, London, UK; Pediatric Rheumatology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, 17176 Stockholm, Sweden. Electronic address:
Cancer is the leading cause of death from disease in children. Survival depends not only on surgery, cytostatic drugs, and radiation but also on systemic immune responses. Factors influencing these immune responses in children of different ages and tumor types are unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!