Background: The worldwide prevalence of obesity has lead to increased efforts to find therapies to treat obesity-related pathologies. Ceramide is a well-established mediator of several health problems that arise from adipose tissue expansion. The purpose of this study was to determine whether AICAR, an AMPK-activating drug, selectively reduces skeletal muscle ceramide synthesis.
Methods: Murine myotubes and rats were challenged with palmitate and high-fat diet, respectively, to induce ceramide accrual, in the absence or presence of AICAR. Transcript levels of the rate-limiting enzyme in ceramide biosynthesis, serine palmitoyltransferase 2 (SPT2) were measured, in addition to lipid analysis. Student's t-test and ANOVA were used to assess the association between outcomes and groups.
Results: Palmitate alone induced an increase in serine palmitoyltransferase 2 (SPT2) expression and an elevation of ceramide levels in myotubes. Co-incubation with palmitate and AICAR prevented both effects. However, ceramide and SPT2 increased with the addition of compound C, an AMPK inhibitor. In rats fed a high-fat diet (HFD), soleus SPT2 expression increased compared with normal chow-fed littermates. Moreover, rats on HFD that received daily AICAR injections had lower SPT2 levels and reduced muscle ceramide content compared with those on HFD only.
Conclusions: These results suggest that AICAR reduces ceramide synthesis by targeting SPT2 transcription, likely via AMPK activation as AMPK inhibition prevented the AICAR-induced improvements. Given the role of skeletal muscle ceramide in insulin resistance, it is tempting to speculate that interventions that activate AMPK may lead to long-term ceramide reduction and improved metabolic function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514253 | PMC |
http://dx.doi.org/10.1186/1758-5996-4-45 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!