A diagnostic biomarker for ALS would permit early intervention with disease-modifying therapies while a biomarker for disease activity could accelerate the pace of drug discovery by facilitating shorter, and less costly, drug trials to be conducted with a smaller number of patients. Neurofilaments are the most abundant neuronal cytoskeletal protein. We set out to determine whether pNfH was a credible biomarker for ALS. pNfH levels were determined using an ELISA for 150 ALS subjects and 140 controls. We demonstrated a seven-fold elevation in the cerebrospinal fluid (CSF) levels of phosphorylated neurofilament heavy subunit (pNfH) in ALS (median = 2787 pg/ml, n = 150), compared to headache and other benign controls (394 pg/ml, n = 100, p = < 0.05). There was a 10-fold elevation of pNfH compared to ALS mimics (266 pg/ml, n = 20) and other neurodegenerative and inflammatory conditions (279 pg/ml for n = 20) which was also highly significant (p = < 0.05). pNfH achieved a diagnostic sensitivity of 90% and specificity of 87% in distinguishing ALS from all controls. We also detected an inverse correlation between CSF pNfH levels and disease duration (time from symptom onset to death, r(2 = )0.1247, p = 0.001). In conclusion, pNfH represents a promising candidate for inclusion in a panel of diagnostic and prognostic biomarkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/21678421.2012.729596 | DOI Listing |
Ophthalmologie
January 2025
Klinik für Augenheilkunde, Universitätsklinikum Ulm, Prittwitzstr. 43, 89075, Ulm, Deutschland.
Comprehensive multimodal imaging is essential for the precise clinical diagnostics of neovascular age-related macular degeneration (nAMD). Noninvasive optical coherence tomography (OCT) is of prime importance regarding the baseline examination, follow-up and monitoring during treatment. The OCT imaging in nAMD eyes enables a high-resolution assessment of the retinal micromorphology, which can be considerably disturbed in different layers.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, USA.
This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.
View Article and Find Full Text PDFFront Neurosci
January 2025
Neurology Associate P.C., Lincoln, NE, United States.
Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS), bulbar involvement significantly impacts psychosocial, emotional, and physical health. A validated objective marker is however lacking to characterize and phenotype bulbar involvement, positing a major barrier to early detection, progress monitoring, and tailored care. This study aimed to bridge this gap by constructing a multiplex functional mandibular muscle network to provide a novel objective measurement tool of bulbar involvement.
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Neurology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
Background: The diagnostic and prognostic values of serum neurofilament light chain (sNfL), in comparison to cerebrospinal fluid (CSF) neurofilament light chain (cNfL), and other clinical parameters in amyotrophic lateral sclerosis (ALS) at the time of diagnosis remain elusive.
Methods: We examine paired serum and CSF samples from 80 ALS patients and 21 control subjects, all obtained at the time of diagnosis. Additional serum samples were collected from 51 other ALS patients.
J Clin Med
January 2025
Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland.
Amyotrophic lateral sclerosis (ALS) is a complex, progressive neurodegenerative disorder characterized by the degeneration of motor neurons in the brain, brainstem, and spinal cord. Several neuroimaging techniques can help reveal the pathophysiology of ALS. One of these is the electroencephalogram (EEG), a noninvasive and relatively inexpensive tool for examining electrical activity of the brain with excellent temporal precision.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!