This study is the first to report that Spirulina complex polysaccharides (CPS) suppress glioma growth by down-regulating angiogenesis via a Toll-like receptor 4 signal. Murine RSV-M glioma cells were implanted s.c. into C3H/HeN mice and TLR4 mutant C3H/HeJ mice. Treatment with either Spirulina CPS or Escherichia coli (E. coli) lipopolysaccharides (LPS) strongly suppressed RSV-M glioma cell growth in C3H/HeN, but not C3H/HeJ, mice. Glioma cells stimulated production of interleukin (IL)-17 in both C3H/HeN and C3H/HeJ tumor-bearing mice. Treatment with E. coli LPS induced much greater IL-17 production in tumor-bearing C3H/HeN mice than in tumor-bearing C3H/HeJ mice. In C3H/HeN mice, treatment with Spirulina CPS suppressed growth of re-transplanted glioma; however, treatment with E. coli LPS did not, suggesting that Spirulina CPS enhance the immune response. Administration of anti-cluster of differentiation (CD)8, anti-CD4, anti-CD8 antibodies, and anti-asialo GM1 antibodies enhanced tumor growth, suggesting that T cells and natural killer cells or macrophages are involved in suppression of tumor growth by Spirulina CPS. Although anti-interferon-γ antibodies had no effect on glioma cell growth, anti-IL-17 antibodies administered four days after tumor transplantation suppressed growth similarly to treatment with Spirulina CPS. Less angiogenesis was observed in gliomas from Spirulina CPS-treated mice than in those from saline- or E. coli LPS-treated mice. These findings suggest that, in C3H/HeN mice, Spirulina CPS antagonize glioma cell growth by down-regulating angiogenesis, and that this down-regulation is mediated in part by regulating IL-17 production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1348-0421.12001 | DOI Listing |
Sci Total Environ
June 2024
Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China. Electronic address:
Microalgal polysaccharides have received much attention due to their potential value in preventing and regulating oxidative damage. This study aims to reveal the mechanisms of regulating oxidative stress and the differences in the yield, structure, and effect of polysaccharides extracted from three microalgae: Golenkinia sp. polysaccharides (GPS), Chlorella sorokiniana polysaccharides (CPS), and Spirulina subsalsa polysaccharides (SPS).
View Article and Find Full Text PDFInt J Biol Macromol
July 2021
College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China. Electronic address:
Microalgae are emerging as a good source of natural nutraceuticals and medicines. This study aims at evaluating the anti-obesity effects of two microalgae polysaccharides (CPS from Chlorella pyrenoidosa and SPS from Spirulina platensis) in high-fat diet (HFD)-induced obese C57BL/6 mice, with β-glucan as a positive control polysaccharide. CPS, SPS and β-glucan were daily administered intragastrically during 10-week HFD feeding, and conferred equally effective protection against overweight, energy imbalance, glucose tolerance impairment, systemic inflammation, dyslipidemia, and fat deposition in the liver and epididymal white adipose tissues.
View Article and Find Full Text PDFFish Shellfish Immunol
November 2019
College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea. Electronic address:
Int Immunopharmacol
December 2013
Laboratory of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Kohasu, Okoh-cho, Nankoku, Kochi 783-8505, Japan; Department of Molecular and Cellular Biology, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku, Kochi 783-8505, Japan. Electronic address:
In order to analyze the damage of human epithelial cells, we used human quasi-normal FPCK-1-1 cells derived from a colonic polyp in a patient with familial adenomatous polyposis as a monolayer, which is co-cultured with peptidoglycan (PGN)-stimulated THP-1 cells. Co-cultured FPCK-1-1 cells showed a decreased transepithelial electrical resistance (TER) and the lower level of claudin-2. When Spirulina complex polysaccharides were added one day before the start of the co-culture, there was no decrease of TER and claudin-2 (early phase damage).
View Article and Find Full Text PDFMicrobiol Immunol
January 2013
Department of Neurosurgery, Kochi Medical School, Kohasu, Okoh-cho, Nankoku, Kochi 7838505 Japan.
This study is the first to report that Spirulina complex polysaccharides (CPS) suppress glioma growth by down-regulating angiogenesis via a Toll-like receptor 4 signal. Murine RSV-M glioma cells were implanted s.c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!