Objective: Detection of focal non-hemorrhagic lesion (NHL) has become more efficient in diffuse axonal injury (DAI) patients using an MRI. The aims of this study are to find out the radiological distribution, progress of NHL and its clinical significance.
Methods: Between September 2005 and October 2011, 32 individuals with NHLs on brain MRI were enrolled. NHLs were classified by brain location into 4 major districts and 13 detailed locations including cortical and subcortical, corpus callosum, deep nuclei and adjacent area, and brainstem. The severity of NHL was scored from grades 1 to 4, according to the number of districts involved. Fourteen patients with NHL were available for MRI follow-up and an investigation of the changes was conducted.
Results: Thirty-two patients had 59 NHLs. The most common district of NHL was cortical and subcortical area; 15 patients had 20 NHSs. However the most common specific location was the splenium of the corpus callosum; 14 patients had 14 lesions. The more lesions patients had, the lower the GCS, however, this was not a statistically meaningful difference. On follow-up MRI in 14 patients, out of 24 lesions, 13 NHLs resolved, 5 showed cystic change, and 6 showed atrophic changes.
Conclusion: NHLs were located most commonly in the splenium and occur frequently in the thalamus and the mesial temporal lobe. Because most NHS occur concomitantly with hemorrhagic lesions, it was difficult to determine their effects on prognosis. Since most NHLs resolve completely, they are probably less significant to prognosis than hemorrhagic lesions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488648 | PMC |
http://dx.doi.org/10.3340/jkns.2012.52.4.377 | DOI Listing |
J Neurol Sci
December 2024
Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Nussallee 10, 53115 Bonn, Germany. Electronic address:
Background And Objectives: Magnetic resonance imaging (MRI) and neurohistopathology are important correlates for evaluation of disease progression in multiple sclerosis (MS). Here we used experimental autoimmune encephalomyelitis (EAE) as an animal model of MS to determine the correlation between clinical EAE severity, MRI and histopathological parameters.
Methods: N = 11 female C57BL/6J mice were immunized with human myelin oligodendrocyte glycoprotein 1-125, while N = 9 remained non-immunized.
J Neurotrauma
December 2024
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Traumatic brain injury (TBI) after high-energy, behind helmet blunt trauma (BHBT) is an important but poorly understood clinical entity often associated with apnea and death in humans. In this study, we use a swine model of high-energy BHBT to characterize key neuropathologies and their association with acute respiratory decompensation. Animals with either stable or critical vital signs were euthanized within 4 h after injury for neuropathological assessment, with emphasis on axonal and vascular pathologies in the brainstem.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
Background: Mild traumatic brain injury (mTBI) frequently results in persistent cognitive, emotional, and functional impairments, closely linked to disruptions in the default mode network (DMN). Understanding the mechanisms driving these network abnormalities is critical for advancing diagnostic and therapeutic strategies.
Methods: This study adopted a multimodal approach, combining functional connectivity (FC) analysis, diffusion tensor imaging (DTI), and gene expression profiling to investigate DMN disruptions in mTBI.
Phys Eng Sci Med
December 2024
Department of Mathematics, IIT Roorkee, Roorkee, Uttarakhand, 247667, India.
This article introduces an innovative methodology to unveil the intricacies of white matter fiber pathways in the brain using diffusion MRI. Relying on the rationale that traditional methods observe a significant decrease in signal intensity values in the direction of higher diffusivity, our novel approach strategically selects for diffusion-sensitizing gradient directions (dSGDs, representing the directions along which signals are generated) aligned with reduced signal intensities. By treating these selected directions as maximum diffusivity directions, we generate uniformly distributed gradient directions (GDs) around them, which are subsequently employed in the reconstruction process.
View Article and Find Full Text PDFClin Neuroradiol
December 2024
Université Lyon I, Université Claude Bernard, Lyon, France.
Purpose: This study aimed to characterize spinal cord microstructure in healthy subjects using high angular resolution diffusion imaging (HARDI) and tractography.
Methods: Forty-nine healthy subjects (18-50 years, divided into 2 age groups) were included in a prospective study. HARDI of the cervical spinal cord were acquired using a 3T MRI scanner with: 64 directions, b‑value: 1000s/mm, reduced field-of-view (zonally magnified oblique multi-slice), and opposed phase-encoding directions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!