Monodisperse yolk-shell SiO(2) -TiO(2) microspheres were synthesized using core-shell silica microspheres as templates. In the absence of prior surface modifications, a uniform coating of the TiO(2) layer on the core-shell silica was achieved through a sol-gel route. Mesoporous silica shells between the outer TiO(2) shell and the SiO(2) core were selectively removed by using a weak base, yielding yolk-shell SiO(2) -TiO(2) microspheres (ys-SiO(2) @TiO(2) ). Using the same templates, we synthesized Pt-encased microspheres (SiO(2) @Pt-TiO(2) ), in which Pt nanoparticles are embedded between the SiO(2) core and the TiO(2) shell. Selective etching of the silica shells in SiO(2) @Pt-TiO(2) yields Pt-encased yolk-shell SiO(2) -TiO(2) microspheres (ys-SiO(2) @< Pt >TiO(2) ), which contain void spaces suitable for use as nanoreactors. The ys-SiO(2) @< Pt >TiO(2) catalyst shows enhanced hydrogen production from water under UV-light irradiation presumably as a result of multiple reflections within the void spaces and can be reused without losing their activity. Moreover, this core-shell template method is effective for the synthesis of other yolk-shell microspheres with different metal oxides.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201200463DOI Listing

Publication Analysis

Top Keywords

yolk-shell sio2
12
sio2 -tio2
12
-tio2 microspheres
12
core-shell silica
8
silica shells
8
tio2 shell
8
sio2 core
8
microspheres ys-sio2
8
sio2 @pt-tio2
8
ys-sio2 >tio2
8

Similar Publications

LaF@SiO yolk-shell heterostructure nanofiber-modified separator enhances the long-cycling performance of lithium-sulfur batteries.

J Colloid Interface Sci

December 2024

College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China. Electronic address:

High-energy-density lithium-sulfur (Li-S) cells are identified as one of the most prospective next-generation energy storage appliances owing to their numerous advantages. Nonetheless, their widespread applications are restricted by the unwanted shuttling effect and tardy conversion reaction kinetics of lithium polysulfides (LiPSs). To address these puzzles, we present an innovative strategy for the one-pot synthesis of LaF@SiO yolk-shell heterostructure nanofibers (YSHNFs) through a straightforward uniaxial electrospinning process coupled with fluorination, avoiding the complexities of traditional methods.

View Article and Find Full Text PDF

Construction of Yolk@shell Nanocomposite Particles with Controlled Multisized Pore Structures by Monomicelle Confined Assembly.

ACS Nano

October 2024

Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.

Hollow nanoparticles with tunable structures and spatial and chemical specificity are considered as promising carriers. However, it remains a formidable challenge to endow hollow nanomaterials with precisely controlled multisized macro/mesoporous structures up to now. This paper demonstrates a "polydopamine (PDA) expansion-shrinkage" strategy combined with a monomicelle interfacial confined assembly method to achieve the highly controllable preparation of a series of yolk@shell PDA@SiO composite nanoparticles with structural asymmetry and a tunable multisized pore in the shell.

View Article and Find Full Text PDF

Silica (SiO) shows promise as anode material for lithium-ion batteries due to its low cost, comparable lithium storage discharge potential and high theoretical capacity (approximately 1961 mA h g). However, it is plagued by issues of low electrochemical activity, low conductivity and severe volume expansion. To address these challenges, we initially coat SiO with CoO, followed by introducing SiO@CoO into graphene sheets to fabricate an anode composite material (SiO@CoO/GS) with uniformly dispersed particles and a 3D graphene wrapped yolk-shell structure.

View Article and Find Full Text PDF

Enhanced photocatalytic performance of coaxially electrospun titania nanofibers comprising yolk-shell particles.

J Colloid Interface Sci

November 2024

Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany. Electronic address:

The present paper reports the fabrication of novel types of hybrid fibrous photocatalysts by combining block copolymer (BCP) templating, sol-gel processing, and coaxial electrospinning techniques. Coaxial electrospinning produces core-shell nanofibers (NFs), which are converted into hollow porous TiO NFs using an oxidative calcination step. Hybrid BCP micelles comprising a single plasmonic nanoparticle (NP) in their core and thereof derived silica-coated core-shell particles are utilized as precursors to generate yolk-shell type particulate inclusions in photocatalytically active NFs.

View Article and Find Full Text PDF

Unexpectedly high thermal stability of Au nanotriangle@mSiO yolk-shell nanoparticles.

Nanoscale

February 2024

Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.

The shape of Au nanoparticles (NPs) plays a crucial role for applications in, amongst others, catalysis, electronic devices, biomedicine, and sensing. Typically, the deformation of the morphology of Au NPs is the most significant cause of loss of functionality. Here, we systematically investigate the thermal stability of Au nanotriangles (NTs) coated with (mesoporous) silica shells with different morphologies (core-shell (CS): Au NT@mSiO/yolk-shell (YS): Au NT@mSiO) and compare these to 'bare' nanoparticles (Au NTs), by a combination of and/or TEM techniques and spectroscopy methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!