The mouse retina constitutes an important research model for studies aiming to unravel the cellular and molecular mechanisms underlying ocular diseases. The accessibility of this tissue and its feasibility to directly obtain neurons from it has increased the number of studies culturing mouse retina, mainly retinal cell suspensions. However, to address many questions concerning retinal diseases and protein function, the organotypic structure must be maintained, so it becomes important to devise methods to transfect and culture whole retinas without disturbing their cellular structure. Moreover, the postmitotic stage of retinal neurons makes them reluctant to commonly used transfection techniques. For this purpose some published methods employ in vivo virus-based transfection techniques or biolistics, methods that present some constraints. Here we report for the first time a method to transfect P15-P20 whole murine retinas via nucleofection, where nucleic acids are directly delivered to the cell nuclei, allowing in vitro transfection of postmitotic cells. A detailed protocol for successful retina extraction, organotypic culture, nucleofection, histological procedures and imaging is described. In our hands the A-33 nucleofector program shows the highest transfection efficiency. Whole flat-mount retinas and cryosections from transfected retinas were imaged by epifluorescence and confocal microscopy, showing that not only cells located in the outermost retinal layers, but also those in inner retinal layers are transfected. In conclusion, we present a novel method to successfully transfect postnatal whole murine retina via nucleofection, showing that retina can be successfully nucleofected after some optimization steps.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720970 | PMC |
http://dx.doi.org/10.1007/s10616-012-9509-3 | DOI Listing |
Cell Commun Signal
January 2025
Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
Ischemic retinopathies are the major causes of blindness, yet effective early-stage treatments remain limited due to an incomplete understanding of the underlying molecular mechanisms. Significant changes in gene expression often precede structural and functional alterations. Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are emerging as novel gene regulators, involved in various biological processes and human diseases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Opthalmology, Chongqing Hechuan District People's Hospital, Chongqing, China.
Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.
Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).
FASEB J
January 2025
Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China.
Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
Purpose: Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!