The psychrophilic yeast Glaciozyma antarctica demonstrated high antifreeze activity in its culture filtrate. The culture filtrate exhibited both thermal hysteresis (TH) and ice recrystallization inhibition (RI) properties. The TH of 0.1 °C was comparable to that previously reported for bacteria and fungi. A genome sequence survey of the G. antarctica genome identified a novel antifreeze protein gene. The cDNA encoded a 177 amino acid protein with 30 % similarity to a fungal antifreeze protein from Typhula ishikariensis. The expression levels of AFP1 were quantified via real time-quantitative polymerase chain reaction (RT-qPCR), and the highest expression levels were detected within 6 h of growth at -12 °C. The cDNA of the antifreeze protein was cloned into an Escherichia coli expression system. Expression of recombinant Afp1 in E. coli resulted in the formation of inclusion bodies that were subsequently denatured by treatment with urea and allowed to refold in vitro. Activity assays of the recombinant Afp1 confirmed the antifreeze protein properties with a high TH value of 0.08 °C.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00792-012-0494-4DOI Listing

Publication Analysis

Top Keywords

antifreeze protein
20
psychrophilic yeast
8
yeast glaciozyma
8
glaciozyma antarctica
8
culture filtrate
8
expression levels
8
recombinant afp1
8
antifreeze
6
protein
6
characterization afp1
4

Similar Publications

Convergent evolution of type I antifreeze proteins from four different progenitors in response to global cooling.

BMC Mol Cell Biol

December 2024

Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, K7L 3N6, Canada.

Alanine-rich, alpha-helical type I antifreeze proteins (AFPs) in fishes are thought to have arisen independently in the last 30 Ma on at least four occasions. This hypothesis has recently been proven for flounder and sculpin AFPs, which both originated by gene duplication and divergence followed by substantial gene copy number expansion. Here, we examined the origins of the cunner (wrasse) and snailfish (liparid) AFPs.

View Article and Find Full Text PDF

Gold Nanoparticles Decorated with HPLC6-Derived Peptides as a Platform for Ice Recrystallization Inhibition.

Biomacromolecules

December 2024

DISFARM, Department of Pharmaceutical Sciences, "A. Marchesini" General and Organic Chemistry Section, Università degli Studi di Milano, Via Venezian 21, Milan 20133, Italy.

In nature, organisms living in extreme environmental conditions produce antifreeze proteins (AFPs) that prevent the growth of ice crystals and depress the freezing point of body fluids. In this study, three different peptides derived from the N-terminal sequence of the helical type I AFP HPLC6, along with a stapled derivative produced via on-resin microwave-assisted copper(I)-catalyzed azide-alkyne cycloaddition, were conjugated to gold nanoparticles. The aim of decorating the surface of the nanoparticles with multiple copies of the peptides was to combine the ice-binding capability of the peptides with the size of a nanoparticle, thus, mimicking the protein bulkiness to enhance the peptide antifreeze activity.

View Article and Find Full Text PDF

Development of 3D Printable Silver Carp () Surimi Gel with Dynamic High-Pressure Microfluidization-Modified Pea Protein Isolate and Microcrystalline Cellulose.

Foods

December 2024

Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 DongChuan Road, Minhang District, Shanghai 200240, China.

Sliver carp is a nutritious and abundant species in China, but its low market value stems from its thin meat, small bones and strong odor. Processing it into surimi enhances its economic value, though surimi typically has low gel strength and is prone to deterioration. Recently, three-dimensional (3D) printing has gained attention as an innovative additive manufacturing technique for personalization and process simplification requiring high-performance materials.

View Article and Find Full Text PDF

Among the many ice-binding proteins (IBPs) found in microorganisms (bacteria, archaea, fungi and algae), the canonical DUF3494 beta-barrel type is the most common. Until now, little variation has been found in this structure: an initial coil leads into an alpha helix that directs the following coils into a reverse stack, with the final coil ending up next to the initial coil. Here, I show that there exist many bacterial proteins whose AlphaFold-predicted structures deviate from the DUF3494 structure so that they are not recognized as belonging to an existing DUF or Pfam family.

View Article and Find Full Text PDF

Antifreeze proteins and surface-modified cellulose nanocrystals for designing anti-freezing conductive hydrogel sensors.

Carbohydr Polym

February 2025

School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.

Antifreeze proteins (AFPs) are a type of protein capable of inhibiting ice crystal growth, lowering the freezing point, and protecting organisms from cold-induced damage. In this study, cellulose nanocrystals (CNCs) are chemically modified to enhance the hydrogel's performance. The synergistic effect with AFPs further regulates its mechanical properties, antifreeze performance, and high sensing sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!