Classification of surface electromyographic signals by means of multifractal singularity spectrum.

Med Biol Eng Comput

Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China.

Published: March 2013

In order to effectively control a prosthetic system, considerable attempts have been made in recent years to improve the classification accuracy of surface electromyographic (SEMG) signals. However, the extraction of effective features is still a primary challenge for the classification of SEMG signals. This study tried to solve the problem by applying the multifractal analysis. It was found that the SEMG signals were characterized by multifractality during forearm movements and different types of forearm movements were related to different multifractal singularity spectra. To quantitatively evaluate the multifractal singularity spectra of the SEMG signals, the areas of the singularity spectrum curves were calculated by integrating the spectrum curves with respect to the singularity strengths. Our results showed that there were several separate clusters resulting from singularity spectrum areas of different forearm movements when two channels of SEMG signals were used in this experimental research, which demonstrated that the multifractal analysis approach was suitable for identifying different types of forearm movements. By comparing with other feature extraction techniques, the multifractal singularity spectrum approach provided higher classification accuracy in terms of the classification of SEMG signals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-012-0990-9DOI Listing

Publication Analysis

Top Keywords

semg signals
24
multifractal singularity
16
singularity spectrum
16
forearm movements
16
surface electromyographic
8
classification accuracy
8
classification semg
8
multifractal analysis
8
types forearm
8
singularity spectra
8

Similar Publications

Gesture-controlled reconfigurable metasurface system based on surface electromyography for real-time electromagnetic wave manipulation.

Nanophotonics

January 2025

Key Laboratory for Information Science of Electromagnetic Waves, School of Information Science and Technology, Fudan University, Shanghai 200433, China.

Gesture recognition plays a significant role in human-machine interaction (HMI) system. This paper proposes a gesture-controlled reconfigurable metasurface system based on surface electromyography (sEMG) for real-time beam deflection and polarization conversion. By recognizing the sEMG signals of user gestures through a pre-trained convolutional neural network (CNN) model, the system dynamically modulates the metasurface, enabling precise control of the deflection direction and polarization state of electromagnetic waves.

View Article and Find Full Text PDF

3D printable and myoelectrically sensitive hydrogel for smart prosthetic hand control.

Microsyst Nanoeng

January 2025

Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China.

Surface electromyogram (sEMG) serves as a means to discern human movement intentions, achieved by applying epidermal electrodes to specific body regions. However, it is difficult to obtain high-fidelity sEMG recordings in areas with intricate curved surfaces, such as the body, because regular sEMG electrodes have stiff structures. In this study, we developed myoelectrically sensitive hydrogels via 3D printing and integrated them into a stretchable, flexible, and high-density sEMG electrodes array.

View Article and Find Full Text PDF

Age-related changes to the orbicularis oculi muscle include impaired eyelid function, such as lagophthalmos, alterations in tear film dynamics, and aesthetic changes like wrinkles, festoons, and the descent of soft tissue. To date, the structural and functional changes that would comprehensively increase our understanding of orbicularis aging have not been analyzed. This study aims to investigate functional outcomes using surface electromyography and correlate them with ultrastructural changes in orbicularis during aging.

View Article and Find Full Text PDF

This study aimed to predict and fit the nonlinear dynamic grip force of the human upper limb using surface electromyographic (sEMG) signals. The research employed a time-series-based neural network, NARX, to establish a mapping relationship between the electromyographic signals of the forearm muscle groups and dynamic grip force. Three-channel electromyographic signal acquisition equipment and a grip force sensor were used to record muscle signals and grip force data of the subjects under specific dynamic force conditions.

View Article and Find Full Text PDF

Detection, identification and removing of artifacts from sEMG signals: Current studies and future challenges.

Comput Biol Med

January 2025

Laboratory of Metrology and Information Processing, Physics Department, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.

Surface electromyography (sEMG), a non-invasive technique, offers the ability to identify insights into the activities of muscles in the form of electrical pulses. During the process of recording, the sEMG signals frequently become contaminated by a multitude of different artifacts, the origin of which may be attributed to numerous sources. These artifacts affect the reliability and accuracy of the pure sEMG activity, and subsequently reduce the quality of analysis and interpretation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!