Recently, it became clear that relaxation effects in amorphous ices play a very important role that has previously been overlooked. The thermodynamic history of amorphous samples strongly affects their transition behavior. In particular, well-relaxed samples show higher thermal stability, thereby providing a larger window to investigate their glass transitions. We here present neutron scattering experiments using fixed elastic window scans on relaxed forms of amorphous ice, namely expanded high density amorphous ice (eHDA), a variant of low density amorphous ice (LDA-II) and hyperquenched glassy water (HGW). These amorphous ices are expected to be true glassy counterparts of deeply supercooled liquid water, therefore fast precursor dynamics of structural relaxation are expected to appear below the calorimetric glass transition temperature. The Debye-Waller factor shows a very weak sub-T(g) anomaly in some of the samples, which might be the signature of such fast precursor dynamics. However, we cannot find this behavior consistently in all samples at all reciprocal length scales of momentum transfer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cp42797d | DOI Listing |
Sci Adv
January 2025
New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Small organic molecules are essential building blocks of our universe, from cosmic dust to planetary surfaces to life. Compared to their well-known gaseous and liquid forms that have been extensively studied, small organic molecules in the form of ice at low temperatures receive much less attention. Here, we show that supercooled small-molecule droplets can be drawn into highly uniform amorphous ice microfibers with lengths up to 5 cm and diameters down to 200 nm.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA.
We perform classical molecular dynamics (MD) and path-integral MD (PIMD) simulations of H2O and D2O using the q-TIP4P/F model over a wide range of temperatures and pressures to study the nuclear quantum effects (NQEs) on (i) the vitrification of liquid water upon isobaric cooling at different pressures and (ii) pressure-induced transformations at constant temperature between low-density amorphous and high-density amorphous ice (LDA and HDA) and hexagonal ice Ih and HDA. Upon isobaric cooling, classical and quantum H2O and D2O vitrify into a continuum of intermediate amorphous ices (IA), with densities in-between those of LDA and HDA (depending on pressure). Importantly, the density of the IA varies considerably if NQEs are included (similar conclusions hold for ice Ih at all pressures studied).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Chemistry, The University of Utah, Salt Lake City, UT 84112-0850.
Recent experiments revealed a new amorphous ice phase, medium-density amorphous ice (MDA), formed by ball-milling ice at 77 K [Rosu-Finsen , Science , 474-478 (2023)]. MDA has density between that of low-density amorphous (LDA) and high-density amorphous (HDA) ices, adding to the complexity of water's phase diagram, known for its glass polyamorphism and two-state thermodynamics. The nature of MDA and its relation to other amorphous ices and liquid water remain unsolved.
View Article and Find Full Text PDFRSC Adv
November 2024
Department of Chemistry, University of Sussex Falmer Brighton BN1 9QJ UK
Complex organic molecules (COMs) have been detected in a wide range of astrophysical environments, including the interstellar medium, comets and proto-planetary disks. The icy mantles that form on dust grains in these environments are thought to be the chemical nurseries that allow the formation of many of the COMs that have been identified. As such, the adsorption, thermal processing and desorption of COMs from dust grain surfaces are important in understanding the astrochemical networks as a whole.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2024
Department of Chemistry, University of Otago, Dunedin 9054, New Zealand.
Nitrogen-containing polycyclic aromatic hydrocarbons (NPAHs) are important molecules for astrochemistry and prebiotic chemistry, as their occurrence spans from interstellar molecular clouds to planetary systems. Their formation has been previously explored in gas phase experiments, but the role of solid-state chemical reactions in their formation under cryogenic conditions remains elusive. Here, we explore the formation of NPAHs through vacuum ultraviolet (VUV) irradiation of pyridine:acetylene ices in amorphous and co-crystalline phases, with the aim to simulate conditions relevant to the interstellar medium and Titan's atmosphere.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!