A genotoxic effect of formaldehyde (FA), particularly micronucleus (MN) induction, has been shown in several previous studies. The aim of the present study was to assess the frequency of micronuclei and to identify the type of chromosomal damage in Tunisian staff members working in the Pathologic Anatomy Laboratory of Farhat Hached hospital (Sousse, Tunisia) who were exposed to FA. Assessment of chromosomal damage was performed in peripheral lymphocytes of 31 FA-exposed employees compared with 31 control employees working in the administrative department of the same hospital. The clastogenic/aneugenic effect of FA was evaluated using the standard MN assay in combination with fluorescence in situ hybridization (FISH) using pan-centromeric probes. The mean level of exposure to FA was 3.4 ppm. The results showed a significant increase of MN frequency in lymphocytes of exposed workers compared with the control group (25.35 ± 6.28 ‰ vs. 7.08  ± 4.62 ‰, p < 0.05). As assessed by FISH, the frequency of centromeric micronuclei (C+MN) was greater in exposed subjects than in controls (18.38 ± 5.94 ‰ vs. 5.03 ± 3.64 ‰). Among the C+MN, the frequency of MN containing one centromere (C1+MN) was significantly greater in pathologists and anatomists than in controls (15.35 ± 6.0 ‰ vs. 3.33 ± 2.74 ‰, p < 0.05). The results showed an effect of sex and time of FA exposure with significantly increased frequencies of all end points measuring aneuploidy (C+MN, C1+MN, and Cx+MN [more then one MN]). The increased frequency of C1+MN observed in the exposed group may suggest a slight aneugenic effect of FA exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00244-012-9828-6DOI Listing

Publication Analysis

Top Keywords

fluorescence situ
8
situ hybridization
8
chromosomal damage
8
compared control
8
combination micronucleus
4
micronucleus assay
4
assay fluorescence
4
hybridization analysis
4
analysis evaluate
4
evaluate genotoxicity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!