Solution processibility is a unique advantage of organic semiconductors, permitting the low-cost production of flexible electronics under ambient conditions. However, the solution affinity to substrate surfaces remains a serious dilemma; liquid manipulation is more difficult on highly hydrophobic surfaces, but the use of such surfaces is indispensable for improving device characteristics. Here we demonstrate a simple technique, which we call 'push coating', to produce uniform large-area semiconducting polymer films over a hydrophobic surface with eliminating material loss. We utilize a poly(dimethylsiloxane)-based trilayer stamp whose conformal contact with the substrate enables capillarity-induced wetting of the surface. Films are formed through solvent sorption and retention in the stamp, allowing the stamp to be peeled perfectly from the film. The planar film formation on hydrophobic surfaces also enables subsequent fine film patterning. The technique improves the crystallinity and field-effect mobility of stamped semiconductor films, constituting a major step towards flexible electronics production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493649 | PMC |
http://dx.doi.org/10.1038/ncomms2190 | DOI Listing |
Clin Microbiol Infect
December 2024
BioTechMed-Graz, Graz, Austria; Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria. Electronic address:
Background: Pneumocystis jirovecii pneumonia (PCP) is a serious opportunistic infection in people living with HIV (PWH) who have low CD4 counts. Despite its side effects, trimethoprim-sulfamethoxazole (TMP-SMX) is currently considered the primary treatment for PCP.
Objectives: To compare the efficacy (treatment-failure and mortality) and tolerability (treatment change) of PCP treatment-regimens with a frequentist network meta-analysis (NMA).
Int J Biol Macromol
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
Most of the developed flexible hydrogel supercapacitors struggle to maintain their electrochemical stability and structural integrity under tensile strain. Therefore, developing a flexible supercapacitor with excellent mechanical properties and stable electrochemical performance under different strains remains a challenge. Based on the previous cartilage-like structure, we designed a new coarse nanofiber bundle and ordered network.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.
The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
International and Inter-University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala 686 560, India; School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India; School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O.Box 17011, Doornfontein, 2028 Johannesburg, South Africa; Trivandrum Engineering, Science and Technology (TrEST) Research Park, Trivandrum 695016, India. Electronic address:
Cellulose paper-based composites represent a promising and sustainable alternative for electromagnetic interference (EMI) shielding applications. Derived from renewable and biodegradable cellulose fibers, these composites are enhanced with conductive fillers namely carbon nanotubes, graphene, or metallic nanoparticles, achieving efficient EMI shielding while maintaining environmental friendliness. Their lightweight, flexible nature, and mechanical robustness make them ideal for diverse applications, including wearable electronics, flexible circuits, and green electronics.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
Conductive hydrogels have great potential for applications in flexible wearable sensors due to the combination of biocompatibility, mechanical flexibility and electrical conductivity. However, constructing conductive hydrogels with high toughness, low hysteresis and skin-like modulus simultaneously remains challenging. In the present study, we prepared a tough and conductive polyacrylamide/pullulan/ammonium sulfate hydrogel with a semi-interpenetrating network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!