Nanotopography controls cell behaviours, such as cell adhesion and migration. However, the mechanisms responsible for topology-mediated cellular functions are not fully understood. A variety of nanopores was fabricated on 316L stainless steel to investigate the effects of spatial control on the growth and function of fibroblasts, the temporal regulation of integrins, and their effects on migration. The NIH-3T3 fibroblast cell line was cultured on the nanopore surfaces, whose pore diameters ranged from 40 to 210 nm. The 40 and 75 nm nanopores enhanced cell proliferation, focal adhesion formation and protein expression of vinculin and β-tubulin after 24 h of incubation. Integrin expression was analysed by qPCR, which showed the extent of spatial and temporal regulation achieved by the nanopores. The protein expression of pERK1/2 was greatly attenuated in cells grown on 185 and 210 nm nanopore surfaces at 12 and 24 h. In summary, the 40 and 75 nm nanopore surfaces promoted cell adhesion and migration in fibroblasts by controlling the temporal expression of integrins and ERK1/2. The current study provides insight into the improvement of the design of stainless steel implants and parameters that affect biocompatibility. The ability to regulate the expression of integrin and ERK1/2 using nanopore surfaces could lead to further applications of surface modification in the fields of biomaterials science and tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2012.09.078DOI Listing

Publication Analysis

Top Keywords

nanopore surfaces
16
spatial temporal
8
cell adhesion
8
adhesion migration
8
stainless steel
8
temporal regulation
8
protein expression
8
cell
6
surfaces
5
expression
5

Similar Publications

Porous nanomaterials have shown great promise in many desalination applications. Zeolite nanotubes, featuring abundant but inhomogeneous nanopores on their surface, have been recently synthesized in experiments; however, their capacity for desalination is not yet understood. In this work, we use molecular dynamics simulations to investigate the capability of assembled zeolite nanotube membranes to perform in desalination applications due to their inherent multiscale porous properties.

View Article and Find Full Text PDF

is a heterotrophic bacterium commonly found in diverse marine environments. Here, we report the complete genome sequence of strain SOCE 003, which is 5,154,101 bp long, encoding 5,524 annotated protein-coding genes, 39 tRNAs, and 8 rRNAs. This genome information will help us understand the ecology of .

View Article and Find Full Text PDF

Ice-Confined Synthesis of Stacked Polymer Nanospheres as Osmotic Power Generation Membranes.

Nano Lett

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Osmotic power extracts electricity from salinity gradients and provides a viable route toward clean energy. To improve the energy conversion efficiency, common strategies rely on fabricating precisely controlled nanopores to meet the requirements of high ionic conductivity and selectivity. We report ion transport through the free-volume networks in stacked polymer nanospheres for osmotic power harvesting.

View Article and Find Full Text PDF

Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.

View Article and Find Full Text PDF

Nanoporous organic polymers (NPOPs) have emerged as versatile materials with robust thermal stability, large surface area (up to 2500 m g), and customizable porosity, making them ideal candidates for advanced hydrogen (H) storage applications. This review provides a comprehensive analysis of various NPOPs, including covalent organic frameworks (COFs), hypercrosslinked polymers (HCLPs), conjugated microporous polymers (CMPs), and porous aromatic frameworks (POAFs). Notably, these materials demonstrate superior H storage capacities, achieving up to 10 wt% at cryogenic temperatures, which is essential for applying H as a clean energy carrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!