Cell penetrating peptides (CPPs) belong to the large family of membrane active peptides that comprises antimicrobial and viral fusion peptides with whom they share many properties. CPPs have been increasingly used to transport a wide range of molecules and nanoparticles inside cells. Despite their recognized potential transporting properties, their mode of action is far from being understood and has been a matter of debate. Penetratin, a widely used CPP is one of the first discovered CPPs, yet its mechanism of action remains obscure. Herein an overview on studies regarding cellular and liposomal uptake and the interaction with lipid model systems of CPPs and more particularly penetratin is provided. Special emphasis will be given to biophysical approaches to investigate penetratin/lipid interaction and subsequent lipid reorganization using lipid model systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/138920312804142174 | DOI Listing |
Peptides play critical roles in cellular functions such as signaling and immune regulation, and peptide-based biotherapeutics show great promise for treating various diseases. Among these, cell-penetrating peptides (CPPs) are particularly valuable for drug delivery due to their ability to cross cell membranes. However, the mechanisms underlying CPP-mediated transport, especially across the blood-brain barrier (BBB), remain poorly understood.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Biochemistry and Molecular Pharmacology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy.
Targeting is the most challenging problem to solve for drug delivery systems. Despite the use of targeting units such as antibodies, peptides and proteins to increase their penetration in tumors the amount of therapeutics that reach the target is very small, even with the use of nanoparticles (NPs). Nature has solved the selectivity problem using a combination of proteins and lipids that are exposed on the cell membranes and are able to recognize specific tissues as demonstrated by cancer metastasis.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Centre for Inflammation Research, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
The cellular uptake routes of peptides and proteins are complex and diverse, often handicapping therapeutic success. Understanding their mechanisms of internalization requires chemical derivatization with approaches that are compatible with wash-free and real-time imaging. In this work, we developed a new late-stage labeling strategy for unprotected peptides and proteins, which retains their biological activity while enabling live-cell imaging of uptake and intracellular trafficking.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Physics, Tsinghua University, Beijing, 100084, China.
Lithium dendrite penetration through solid electrolyte has been the major obstacle for practical sulfide-based all-solid-state lithium metal batteries (ASSLMBs). Herein, a series of tailored model solid cells are designed to investigate the intrinsic lithium growth behavior at open surfaces and internal cracks of sulfide solid electrolyte. It is shown that when plating lithium on the open surface of electrolyte (free space), the lithium exhibits an intrinsic columnar growth behavior perpendicular to the electrolyte surface, preferentially along the (110) crystal axis.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
The auxin-inducible degron (AID) system is widely used to study function of various proteins. The plant hormone auxin is used as an inducer in this system, which easily penetrates into the cells and causes proteasomal degradation of the protein of interest fused to a small degron tag. It is often assumed that as a plant hormone, auxin does not significantly affect physiology of animal cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!