To investigate climatic influence on floodplain trees, we analysed interannual correspondences between the Pacific Decadal Oscillation (PDO), river and groundwater hydrology, and growth and wood (13)C discrimination (Δ(13)C) of narrowleaf cottonwoods (Populus angustifolia) in a semi-arid prairie region. From the Rocky Mountain headwaters, river discharge (Q) was coordinated with the PDO (1910-2008: r(2) = 0.46); this pattern extended to the prairie and was amplified by water withdrawal for irrigation. Floodplain groundwater depth was correlated with river stage (r(2) = 0.96), and the cottonwood trunk basal area growth was coordinated with current- and prior-year Q (1992-2008: r(2) = 0.51), increasing in the mid-1990s, and decreasing in 2000 and 2001. Annual Δ(13)C decreased during low-flow years, especially in trees that were higher or further from the river, suggesting drought stress and stomatal closure, and male trees were more responsive than females (-0.86 versus -0.43‰). With subsequently increased flows, Δ(13)C increased and growth recovered. This demonstrated the linkages between hydroclimatic variation and cottonwood ecophysiology, and we conclude that cottonwoods will be vulnerable to drought from declining river flows due to water withdrawal and climate change. Trees further from the river could be especially affected, leading to narrowing of floodplain forests along some rivers.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12031DOI Listing

Publication Analysis

Top Keywords

river flows
8
growth wood
8
water withdrawal
8
river
7
trees
5
hydrologic linkages
4
linkages climate
4
climate oscillation
4
oscillation river
4
growth
4

Similar Publications

California's Bay-Delta watershed encompasses 40% of the state's runoff and serves water supply and irrigation needs throughout the state. A recently amended policy attempts to rebalance water supply and ecological outcomes by requiring 40% of the flow to remain in-stream in the Tuolumne River and other tributaries between February 1 and June 30 each year. This policy impacts water supply diversions serving millions of customers in the San Francisco Bay Area.

View Article and Find Full Text PDF

Flooding remains a critical issue in urban catchments, driven by complex interactions between land use changes, hydrological dynamics, and environmental factors. This study aims to investigate how modifications in Landscape Hydric Potential (LHP) affect flood behavior in the Drwinka River catchment in Krakow, Poland. Given the rapid urbanization and its impacts on hydrological systems, understanding these changes is essential for effective flood management and mitigation.

View Article and Find Full Text PDF

The European Union's Biodiversity Strategy 2030, reinforced by the new Nature Restoration Law, targets restoring a minimum of 25,000 km of 'free-flowing rivers' by 2030. Central to this endeavor is the imperative to restore natural longitudinal and lateral connectivity of rivers and floodplains. Focused on scrutinizing data, methods, and tools employed in published studies from 2000 to 2023, our literature review reveals both encouraging developments and significant challenges at pan-European and regional scales to prioritize barriers for removal.

View Article and Find Full Text PDF

Fate of polycyclic aromatic hydrocarbon (PAHs) in urban lakes under hydrological connectivity: A multi-media mass balance approach.

Environ Pollut

December 2024

School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China.

Polycyclic aromatic hydrocarbons (PAHs) are a class of organic pollutants widely present in various environmental media. Some PAHs have carcinogenic, teratogenic, and mutagenic effects. Urban lakes are severely polluted by PAHs due to human activities.

View Article and Find Full Text PDF

Microorganisms play a fundamental role in driving biogeochemical functions within rivers. Theoretically, the directional flowing nature of river contributes to the continuous downstream change pattern of microbial communities. This continuity is anticipated to be influenced by human activities as anthropogenic materials lead to the mixing of environmental substances and their resident microorganisms with local communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!