For bi- and trivalent Me(q+) (Me = metal) cations of alkaline earth (AE) and rare earth (RE) metals, respectively, the formation of the nonacid MeOH((q-1)+) species and acid H-Ozeo group, where Ozeo is the framework atom, from water adsorbed at the multivalent Me(q+)(H2O) cation in cationic form zeolites was checked at both isolated cluster (8R or 6R + 4R) and periodic (the mordenite framework) levels. Both approaches demonstrate qualitative differences for the stability of the dissociated water between the two classes of industrial cationic forms if two Al atoms are closely located. The RE forms split water while the AE ones do not, that can be a basis of different proton transfer in the RE zeolites (thermodynamic control) than in the AE forms (kinetic control). The cluster models allow quantitatively explaining nearly equal intensities IHF ∼ ILF of the high frequency (HF) and low frequency (LF) OH vibrations in the RE forms and lowered IHF ≪ ILF in the AE forms, where HF bands are assigned to the Me-OH groups in the RE and AE forms, respectively, while LF bands are assigned to the Si-O(H)-Al groups. The role of electrostatic terms for water dissociation in the RE and AE forms is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic301279v | DOI Listing |
Adv Colloid Interface Sci
January 2025
Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. Electronic address:
Covalent organic frameworks (COFs) are a class of porous crystalline materials with high surface areas, tunable pore sizes, and customizable surface chemistry, making them ideal for selective metal ion separation. This review explores the nanoarchitectonics, mechanisms, and applications of COFs in metal ion separation. We highlight the diverse bonding types (e.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.
Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
Rapid warming in northern lands has led to increased ecosystem carbon uptake. It remains unclear, however, whether and how the beneficial effects of warming on carbon uptake will continue with climate change. Moreover, the role played by water stress in temperature control on ecosystem carbon uptake remains highly uncertain.
View Article and Find Full Text PDFPLoS One
January 2025
Water Resources Engineering Department, College of Engineering, Salahaddin University, Erbil, Iraq.
This paper addresses the mechanical characteristics of a passive earth pressure problem taking into account water retention curve (SWRC) hysteresis. Both hydraulic (drying and wetting cycles) and mechanical hysteresis were considered. Parametric studies were carried out at various air entry values (AEV = 5-30 kPa), different wall frictions (δ = 0, 0.
View Article and Find Full Text PDFSci Rep
January 2025
Shaanxi Province Key Laboratory of Bio-resources, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China.
Soil salinization becomes serious under climate change and human activities. Although the residue decomposition contributes lots to soil carbon storage and fertility, the decomposition process and microbial mechanisms on saline-alkali soils are still vague facing climate change. We measured the mass loss of residue (0, 4, 8, 15, 30, 60 and 90 days), CO emission (every two days), and the microbial community structure (0, 4, 15 and 90 days) by using the litter bag method, gas chromatography and high-throughput sequencing technology during the residue decomposition (90 days) in a saline-alkali soil from the Tarim River Basin, China under various temperatures (15 °C, 25 °C, 35 °C) and soil moisture levels (20%, 40%, 60% water holding capacity).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!