Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118673 | PMC |
http://dx.doi.org/10.1021/ac3027564 | DOI Listing |
Chemistry
January 2025
VIT University, Materials Chemistry Division, School of Advanced Sciences, VIT University, 632014, Vellore, INDIA.
Amidines are a vital class of bioactive compounds and often necessitate multiple components for their synthesis. Therefore, exploring efficient and sustainable methodologies for their synthesis is indispensable. Herein, we disclose an alternative and greener method for synthesizing an unexplored new class of amidines through the photochemical synergistic effect of copper/nitroxyl radical catalysis.
View Article and Find Full Text PDFMar Drugs
January 2025
Toxicology of Contaminants Unit, Fougères Laboratory, ANSES (French Agency for Food, Environmental and Occupational Health & Safety), 35306 Fougères, France.
The pinnatoxins (PnTXs) and portimines, produced by , have been detected in several countries, raising concerns for human health. Although no human poisoning from these toxins has been reported so far, they have been shown to distribute throughout the rodent body after oral administration. Therefore, we investigated the impact of PnTX analogs (PnTX-A, -E, -F, -G, and -H) and portimine (8, 16, and 32 ng/mL) on intestinal barrier integrity and their oral bioavailability using human Caco-2 cell monolayers treated for 2, 6, and 24 h.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia.
Alkaloids are predominantly nitrogen-containing heterocyclic compounds that are usually isolated from plants, and sometimes from insects or animals. Alkaloids are one of the most important types of natural products due to their diverse biological activities and potential applications in modern medicine. Cyclic imines were chosen as starting compounds for the synthesis of alkaloids due to their high synthetic potential.
View Article and Find Full Text PDFMar Drugs
December 2024
Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK.
Harmful algal biotoxins in the marine environment are a threat to human food safety due to their bioaccumulation in bivalve shellfish. Whilst official control monitoring provides ongoing risk management for regulated toxins in live bivalve molluscs, no routine monitoring system is currently in operation in the UK for other non-regulated toxins. To assess the potential presence of such compounds, a systematic screen of bivalve shellfish was conducted throughout Great Britain.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
Cyclo(Pro-Val) is a diketopiperazine (DKP) found widespread in marine microbes and resulting food products. With new bioactivities of cyclo(Pro-Val) being continually discovered, its potential applications in agriculture and food are becoming more evident, highlighting the need for efficient and practical methods to produce these compounds. However, the biosynthesis mechanisms of cyclo(Pro-Val), particularly in probiotics, remain unclear, and the functional identification of nonribosomal peptide synthases (NRPS) is still limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!