The dynamics and kinetics of the O((3)P) + CS(X(1)Σ(+)) → CO(X(1)Σ(+)) + S((3)P) chemical laser reaction was studied theoretically in detail for the first time, as a function of collision energy (0.0388-2.0 eV) and rovibrational excitation of CS. This was made using the quasi-classical trajectory (QCT) method and employing the best ab initio analytical ground potential energy surface (1(3)A' PES) available. A broad set of properties was determined, including scalar and vector properties, and the reaction mode. The behaviors observed and the considerable formation of OCS collision complexes were interpreted from some characteristics of the PES (early barrier, shallow minimum in the exit channel, and high exoergicity (mainly channeled into CO vibration; up to ∼81% of the available energy)) and the kinematics. The QCT vibrational and rotational CO populations and the vector properties show a quite good agreement with experiments, but the QCT rate constants disagree. To better account for the kinetics, we performed CASPT2/aug-cc-pVTZ ab initio calculations on the stationary points along the minimum energy path of the ground and first excited (1(3)A'') PESs. The transition state theory, which can be satisfactorily applied here, leads to rate constants (100-2000 K) that are quite close to the measured ones, where comparison is possible (150-300 K). We expect that these results will encourage further theoretical and experimental developments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp306218z | DOI Listing |
RSC Adv
January 2025
College of Agriculture and Biological Science, Dali University Dali 671000 China
The conformational dynamics and activation mechanisms of KRAS proteins are of great importance for targeted cancer therapy. However, the detailed molecular mechanics of KRAS activation induced by GTP binding remains unclear. In this study, we systematically investigated how GTP/GDP exchange affects the thermodynamic and kinetic properties of KRAS and explored the activation mechanism using molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) models.
View Article and Find Full Text PDFAppl Spectrosc
January 2025
Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
Time-resolved, rapid-scan Fourier transform infrared (FT-IR) difference spectra have been recorded upon illumination on photosynthetic reaction centers (RCs) from under fixed hydration conditions (relative humidity = 76%). Two different illumination schemes were adopted. Whereas the use of a laser flash (duration: 7 ns) made it possible to follow the kinetics of recombination of the light-induced state PQ to the neutral state PQ, the use of a 20.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom. Electronic address:
Photosynthetic organisms rely on a network of light-harvesting protein-pigment complexes to efficiently absorb sunlight and transfer excitation energy to reaction centre proteins where charge separation occurs. In photosynthetic purple bacteria, these complexes are embedded within the cell membrane, with lipid composition affecting complex clustering, thereby impacting inter-complex energy transfer. However, the impact of the lipid bilayer on intra-complex excitation dynamics is less understood.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Lithium dendrites are widely acknowledged as the main culprit of the degradation of performance in various Li-based batteries. Studying the mechanism of lithium dendrite formation is challenging because of the high reactivity of lithium metal. In this work, a phase field model and in situ observation experiments were used to study the growth kinetics and morphologies of lithium dendrites in terms of anisotropy, temperature, and potential difference.
View Article and Find Full Text PDFFood Res Int
February 2025
School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan. Electronic address:
In this study, we assessed the effects of temperature and dilution on uropathogenic Escherichia coli (UPEC) growth in sugarcane juice and modeled the kinetics for shelf life simulation. Diluted and undiluted sugarcane juice samples inoculated with a four-strain UPEC cocktail were stored at 4, 10, 15, 20, 30, and 40 °C to evaluate their growth during storage. Changes in UPEC growth were fitted using three primary models (Baranyi, Huang, and reparameterized Gompertz models), and two secondary models (Huang square-root and Ratkowsky square-root models) were selected to evaluate the effect of temperature on specific growth rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!