A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kinetics of zero valent iron nanoparticle oxidation in oxygenated water. | LitMetric

Zero valent iron (ZVI) nanoparticles are versatile in their ability to remove a wide variety of water contaminants, and ZVI-based bimetallic nanoparticles show increased reactivity above that of ZVI alone. ZVI nanoparticles degrade contaminants through the reactive species (e.g., OH*, H(2(g)), H(2)O(2)) that are produced during iron oxidation. Measurement and modeling of aqueous ZVI nanoparticle oxidation kinetics are therefore necessary to optimize nanoparticle design. Stabilized ZVI and iron-nickel nanoparticles of approximately 150 nm in diameter were synthesized through solution chemistry, and nanoparticle oxidation kinetics were determined via measured mass change using a quartz crystal microbalance (QCM). Under flowing aerated water, ZVI nanoparticles had an initial exponential growth behavior indicating surface-dominated oxidation controlled by migration of species (H(2)O and O(2)) to the surface. A region of logarithmic growth followed the exponential growth which, based on the Mott-Cabrera model of thin oxide film growth, suggests a reaction dominated by movement of species (e.g., iron cations and oxygen anions) through the oxide layer. The presence of ethanol or a nickel shell on the ZVI nanoparticles delayed the onset of iron oxidation and reduced the extent of oxidation. In oxygenated water, ZVI nanoparticles oxidized primarily to the iron oxide-hydroxide lepidocrocite.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es303037kDOI Listing

Publication Analysis

Top Keywords

zvi nanoparticles
20
nanoparticle oxidation
12
valent iron
8
oxidation oxygenated
8
oxygenated water
8
zvi
8
iron oxidation
8
oxidation kinetics
8
water zvi
8
exponential growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!