A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be subject to high neutron fluxes as expected in ITER. The operating wavelength range, from 390 nm to 2500 nm, allows the measurements of the emission of all expected impurities (W I, Be II, C I, C II, C III) with high optical transmittance (≥ 30% in the designed wavelength range) as well as high spatial resolution that is ≤ 2 mm at the object plane and ≤ 3 mm for the full depth of field (± 0.7 m). The new optical design includes options for in situ calibration of the endoscope transmittance during the experimental campaign, which allows the continuous tracing of possible transmittance degradation with time due to impurity deposition and erosion by fast neutral particles. In parallel to the new optical design, a new type of possibly ITER relevant shutter system based on pneumatic techniques has been developed and integrated into the endoscope head. The endoscope is equipped with four digital CCD cameras, each combined with two filter wheels for narrow band interference and neutral density filters. Additionally, two protection cameras in the λ > 0.95 μm range have been integrated in the optical design for the real time wall protection during the plasma operation of JET.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4731759 | DOI Listing |
Sci Adv
January 2025
Department of Chemistry, Northwestern University, Evanston, IL 60201, USA.
Halide perovskites are used to fabricate energy-efficient optoelectronic devices. Determining which compositions yield desired chromatic responses is challenging, especially when doping strategies are used. Here, we report a way of mapping the compositional space of halide perovskites to generate a light emission or "chromaticity" palette.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Nowadays, gastroesophageal reflux disease (GERD) has emerged as one of the major hazards to the health of the upper gastrointestinal tract, and there is an urgent need for a low-cost, user-friendly, and non-invasive detection method. Herein, a paper-based sensor (CP sensor) for the non-invasive screening of GERD is proposed. The sensor is structured as a specially shaped cellulose paper strip embedded with fluorescent colloids, which are self-assembled from a cleavable synthetic fluorescent polymer (P4).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Jilin University, College of Electronic Science and Engineering, State Key Laboratory of Integrated Optoelectronics, Qianjin Avenue 2699, Changchun, 130012, Changchun, CHINA.
Stable luminescent diradicals, characterized by the presence of two unpaired electrons, exhibit unique photophysical properties that are sensitive to external stimuli such as temperature, magnetic fields, and microwaves. This sensitivity allows the manipulation of their spin states and luminescence, setting them apart from traditional closed-shell luminescent molecules and luminescent monoradicals. As a result, luminescent diradicals are emerging as promising candidates for a variety of applications.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
During the COVID-19 pandemic, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been recognized as the most reliable diagnostic tool. However, there is a need to develop multiplexed assays capable of analyzing multiple genes simultaneously to expand its application. To address this, a multiplexed RT-qPCR using a double emulsion (DE)-based carrier and a polymer microparticle reactor, termed primer-incorporated network tailored with Taqman probe (TaqPIN) is developed.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China.
Recent advances in drug design and compound synthesis have highlighted the increasing need for effective methods of toxicity evaluation. A specialized force sensor, known as the light wavelength-encoded "Chinese guzheng" is developed. This innovative sensor is equipped with optical fiber strings and utilizes a wavelength-encoded fiber Bragg grating (FBG) that is chemically etched to reduce its diameter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!