Stability of azacitidine in sterile water for injection.

Can J Hosp Pharm

, MScPhm, is Director of the Department of Pharmacy, Sunnybrook Health Sciences Centre, and Associate Professor, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario.

Published: September 2012

Background: The product monograph for azacitidine states that once reconstituted, the drug may be held for only 30 min at room temperature or 8 h at 4°C. Standard doses result in wastage of a portion of each vial, and the cost of this wastage is significant, adding about $156 000 to annual drug expenditures at the authors' institution.

Objective: To evaluate the stability of azacitidine after reconstitution.

Methods: Vials of azacitidine were reconstituted with sterile water for injection. At the time of reconstitution, the temperature of the diluent was 4°C for samples to be stored at 4°C or -20°C and room temperature for samples to be stored at 23°C. Solutions of azacitidine (10 or 25 mg/mL) were stored in polypropylene syringes and glass vials at room temperature (23°C), 4°C, or -20°C. The concentration of azacitidine was determined by a validated, stability-indicating liquid chromatographic method in serial samples over 9.6 h at room temperature, over 4 days at 4°C, and over 23 days at -20°C. The recommended expiry date was determined on the basis of time to reach 90% of the initial concentration according to the fastest observed degradation rates (i.e., lower limit of 95% confidence interval).

Results: Azacitidine degradation was very sensitive to temperature but not storage container (glass vial or polypropylene syringe). Reconstitution with cold sterile water reduced degradation. At 23°C, 15% of the initial concentration was lost after 9.6 h; at 4°C, 32% was lost after 4 days; and at -20°C, less than 5% was lost after 23 days.

Conclusions: More than 90% of the initial azacitidine concentration will be retained, with 97.5% confidence, if, during the life of the product, storage at 23°C does not exceed 2 h, storage at 4°C does not exceed 8 h, and storage at -20°C does not exceed 4 days. These expiry dates could substantially reduce wastage and cost where the time between doses does not exceed 4 days.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477832PMC
http://dx.doi.org/10.4212/cjhp.v65i5.1172DOI Listing

Publication Analysis

Top Keywords

room temperature
16
sterile water
12
stability azacitidine
8
water injection
8
samples stored
8
4°c -20°c
8
days -20°c
8
90% initial
8
initial concentration
8
exceed storage
8

Similar Publications

Plasma is considered as the fourth state of matter, and atmospheric cold plasma (cold plasma) is a type of plasma consisting of ionized gases containing excited species of atoms, molecules, ions, and free radicals at near room temperature. Cold plasma is generated by applying high voltage to gases, causing it to ionize thus forming plasma. Although cold plasma has been found to break seed dormancy and improve germination rate, only a few studies have explored the potential of cold plasma against insect herbivory.

View Article and Find Full Text PDF

Powder-based fire extinguishing agents have become a kind of promising substitutes for halon extinguishing agents in civil aircrafts. However, their storage lifespan, significantly influenced by the thermal aging, emerges as a crucial yet overlooked aspect for aviation use. This study investigates the effects of thermal aging cycles on various parameters of ordinary dry powder extinguishing agent (ODPEA) and novel superhydrophobic and oleophobic ultra-fine dry powder extinguishing agent (SHOU DPEA), including surface microscopic morphology, D90 (the diameter at which 90% of the cumulative volume of particles are equal to or smaller than this value), chemical structure, hydrophobic and oleophobic angles, flowability, extinguishing time and effectiveness.

View Article and Find Full Text PDF

As a result of the current high throughput of the fast fashion collections and the concomitant decrease in product lifetime, we are facing enormous amounts of textile waste. Since textiles are often a blend of multiple fibers (predominantly cotton and polyester) and contain various different components, proper waste management and recycling are challenging. Here, we describe a high-yield process for the sequential chemical recycling of cotton and polyester from mixed waste textiles.

View Article and Find Full Text PDF

In recent years, metal hydride research has become one of the driving forces of the high-pressure community, as it is believed to hold the key to superconductivity close to ambient temperature. While numerous novel metal hydride compounds have been reported and extensively investigated for their superconducting properties, little attention has been focused on the atomic and electronic states of hydrogen, the main ingredient in these novel compounds. Here, we present combined H- and La-NMR data on lanthanum superhydrides, LaH, (x = 10.

View Article and Find Full Text PDF

An effective approach for lignin-based bamboo adhesive preparation via swelling crosslinking.

Int J Biol Macromol

January 2025

Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China. Electronic address:

The preparation of lignin-based adhesives from sustainable lignin sources has garnered increasing attention from many researchers in recent years. However, developing high-performance and environmentally friendly lignin-based adhesives through a simple and efficient approach remains a significant challenge. In this study, aminated corn stover lignin (ACSL) was prepared by aminating corn stover lignin (CSL) using glutaraldehyde and ethylenediamine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!