Effects of drought on the microtranscriptome of field-grown sugarcane plants.

Planta

Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.

Published: March 2013

Sugarcane (Saccharum spp.) is the most promising crop for renewable energy. Among the diverse stresses that affect plant productivity, drought stress frequently causes losses in sugarcane fields. Although several studies have addressed plant responses to drought using controlled environments, plant responses under field conditions are largely unknown. Recently, microRNA (miRNA)-mediated post-transcriptional regulation has been described as an important and decisive component in vegetal development and stress resistance modulation. The role of miRNAs in sugarcane responses to drought under field conditions is currently not known. Two sugarcane cultivars differing in drought tolerance were grown in the field with and without irrigation (rainfed) for 7 months. By using small RNA deep sequencing, we were able to identify 18 miRNA families comprising 30 mature miRNA sequences. Among these families, we found 13 mature miRNAs that were differentially expressed in drought-stressed plants. Seven miRNAs were differentially expressed in both cultivars. The target genes for many of the differentially expressed mature miRNAs were predicted, and some of them were validated by quantitative reverse transcription PCR. Among the targets, we found transcription factors, transporters, proteins associated with senescence, and proteins involved with flower development. All of these data increase our understanding of the role of miRNAs in the complex regulation of drought stress in field-grown sugarcane, providing valuable tools to develop new sugarcane cultivars tolerant to drought stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579473PMC
http://dx.doi.org/10.1007/s00425-012-1795-7DOI Listing

Publication Analysis

Top Keywords

drought stress
12
differentially expressed
12
field-grown sugarcane
8
plant responses
8
responses drought
8
field conditions
8
role mirnas
8
sugarcane cultivars
8
mature mirnas
8
mirnas differentially
8

Similar Publications

Plants are colonized by a vast array of microorganisms that outstrip plant cell densities and genes, thus referred to as plant's second genome or extended genome. The microbial communities exert a significant influence on the vigor, growth, development and productivity of plants by supporting nutrient acquisition, organic matter decomposition and tolerance against biotic and abiotic stresses such as heat, high salt, drought and disease, by regulating plant defense responses. The rhizosphere is a complex micro-ecological zone in the direct vicinity of plant roots and is considered a hotspot of microbial diversity.

View Article and Find Full Text PDF

Drought stress inhibits Bunge () seedling growth and yield. Here, we studied the effects of drought stress on the different parts of seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (HO), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in seedlings, and inhibited the growth of plants.

View Article and Find Full Text PDF

Introduction: Plant physiology response and adaptation to drought stress has become a hotspot in plant ecology and evolution. possesses high ecological, ornamental and economic benefits. It has large root system and tolerance to cold, drought and poor soil.

View Article and Find Full Text PDF

Can spatial self-organization inhibit evolutionary adaptation?

J R Soc Interface

January 2025

The Swiss Institute for Dryland Environmental and Energy Research, BIDR, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.

Plants often respond to drier climates by slow evolutionary adaptations from fast-growing to stress-tolerant species. These evolutionary adaptations increase the plants' resilience to droughts but involve productivity losses that bear on agriculture and food security. Plants also respond by spatial self-organization, through fast vegetation patterning involving differential plant mortality and increased water availability to the surviving plants.

View Article and Find Full Text PDF

Regulatory networks of bZIPs in drought, salt and cold stress response and signaling.

Plant Sci

January 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China. Electronic address:

Abiotic stresses adversely impact plants survival and growth, which in turn affect plants especially crop yields worldwide. To cope with these stresses, plant responses depend on the activation of molecular networks cascades, including stress perception, signal transduction, and the expression of specific stress-related genes. Plant bZIP (basic leucine zipper) transcription factors are important regulators that respond to diverse abiotic stresses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!